These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8091076)

  • 1. Cerebellar nuclei: rapid alternating movement, motor somatotopy, and a mechanism for the control of muscle synergy.
    Thach WT; Perry JG; Kane SA; Goodkin HP
    Rev Neurol (Paris); 1993; 149(11):607-28. PubMed ID: 8091076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebellar control of constrained and unconstrained movements. II. EMG and nuclear activity.
    Goodkin HP; Thach WT
    J Neurophysiol; 2003 Feb; 89(2):896-908. PubMed ID: 12574467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of cerebellar nuclei comparing finger, foot and tongue movements as revealed by fMRI.
    Dimitrova A; de Greiff A; Schoch B; Gerwig M; Frings M; Gizewski ER; Timmann D
    Brain Res Bull; 2006 Dec; 71(1-3):233-41. PubMed ID: 17113951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Output organization of intermediate cerebellum of the monkey.
    van Kan PL; Houk JC; Gibson AR
    J Neurophysiol; 1993 Jan; 69(1):57-73. PubMed ID: 8433134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
    Moritz CT; Lucas TH; Perlmutter SI; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1228-70. PubMed ID: 2934519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonuniform distribution of reach-related and torque-related activity in upper arm muscles and neurons of primary motor cortex.
    Kurtzer I; Herter TM; Scott SH
    J Neurophysiol; 2006 Dec; 96(6):3220-30. PubMed ID: 17005623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum.
    Thach WT
    J Neurophysiol; 1978 May; 41(3):654-76. PubMed ID: 96223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primate upper limb muscles exhibit activity patterns that differ from their anatomical action during a postural task.
    Kurtzer I; Pruszynski JA; Herter TM; Scott SH
    J Neurophysiol; 2006 Jan; 95(1):493-504. PubMed ID: 16251262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discharges of intracerebellar nuclear cells in monkeys.
    Harvey RJ; Porter R; Rawson JA
    J Physiol; 1979 Dec; 297(0):559-80. PubMed ID: 119847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of interpositus neurons during a visually guided reach.
    Gibson AR; Horn KM; Stein JF; Van Kan PL
    Can J Physiol Pharmacol; 1996 Apr; 74(4):499-512. PubMed ID: 8828895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebellar control of constrained and unconstrained movements. I. Nuclear inactivation.
    Goodkin HP; Thach WT
    J Neurophysiol; 2003 Feb; 89(2):884-95. PubMed ID: 12574466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphometry of Macaca mulatta forelimb. III. Moment arm of shoulder and elbow muscles.
    Graham KM; Scott SH
    J Morphol; 2003 Mar; 255(3):301-14. PubMed ID: 12520548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillatory activity in forelimb muscles of behaving monkeys evoked by microstimulation in the cerebellar nuclei.
    Aumann TD; Fetz EE
    Neurosci Lett; 2004 May; 361(1-3):106-10. PubMed ID: 15135905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intersensory facilitation in rapid single-joint voluntary activation and cancellation of arm movements.
    Lo YL; Fook-Chong S
    Int J Neurosci; 2007 Jun; 117(6):823-35. PubMed ID: 17454246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons.
    Kawashima N; Nozaki D; Abe MO; Akai M; Nakazawa K
    J Neurophysiol; 2005 Feb; 93(2):777-85. PubMed ID: 15385590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscles within muscles: Coordination of 19 muscle segments within three shoulder muscles during isometric motor tasks.
    Brown JM; Wickham JB; McAndrew DJ; Huang XF
    J Electromyogr Kinesiol; 2007 Feb; 17(1):57-73. PubMed ID: 16458022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goal-directed arm movements: I. Analysis of EMG records in shoulder and elbow muscles.
    Happee R
    J Electromyogr Kinesiol; 1992; 2(3):165-78. PubMed ID: 20719610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.