BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8091387)

  • 1. Phospholipid-specific conformational changes in human prothrombin upon binding to procoagulant acidic lipid membranes.
    Wu JR; Lentz BR
    Thromb Haemost; 1994 May; 71(5):596-604. PubMed ID: 8091387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier transform infrared spectroscopic study of Ca2+ and membrane-induced secondary structural changes in bovine prothrombin and prothrombin fragment 1.
    Wu JR; Lentz BR
    Biophys J; 1991 Jul; 60(1):70-80. PubMed ID: 1909190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble phospholipids enhance factor Xa-catalyzed prothrombin activation in solution.
    Koppaka V; Wang J; Banerjee M; Lentz BR
    Biochemistry; 1996 Jun; 35(23):7482-91. PubMed ID: 8652526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phosphatidylserine binding site of the factor Va C2 domain accounts for membrane binding but does not contribute to the assembly or activity of a human factor Xa-factor Va complex.
    Majumder R; Quinn-Allen MA; Kane WH; Lentz BR
    Biochemistry; 2005 Jan; 44(2):711-8. PubMed ID: 15641797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of the Bax C-terminal domain with negatively charged lipids modifies the secondary structure and changes its way of insertion into membranes.
    Ausili A; Torrecillas A; Martínez-Senac MM; Corbalán-García S; Gómez-Fernández JC
    J Struct Biol; 2008 Oct; 164(1):146-52. PubMed ID: 18672068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans-cis isomerization of proline 22 in bovine prothrombin fragment 1: a surprising result of structural characterization.
    Perera L; Darden TA; Pedersen LG
    Biochemistry; 1998 Aug; 37(31):10920-7. PubMed ID: 9692984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane binding induces lipid-specific changes in the denaturation profile of bovine prothrombin. A scanning calorimetry study.
    Lentz BR; Wu JR; Sorrentino AM; Carleton JN
    Biophys J; 1991 Oct; 60(4):942-51. PubMed ID: 1742461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR study of the thermal denaturation of alpha-actinin in its lipid-free and dioleoylphosphatidylglycerol-bound states and the central and N-terminal domains of alpha-actinin in D2O.
    Han X; Li G; Li G; Lin K
    Biochemistry; 1998 Jul; 37(30):10730-7. PubMed ID: 9692963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of calcium and phosphatidic acid binding on the C2 domain of PKC alpha as studied by Fourier transform infrared spectroscopy.
    García-García J; Corbalán-García S; Gómez-Fernández JC
    Biochemistry; 1999 Jul; 38(30):9667-75. PubMed ID: 10423245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-dependent conformational changes in a recombinant vWF-A domain from human factor B: a solution study by circular dichroism, fourier transform infrared and (1)H NMR spectroscopy.
    Hinshelwood J; Perkins SJ
    J Mol Biol; 2000 Apr; 298(1):135-47. PubMed ID: 10756110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylserine-containing membranes alter the thermal stability of prothrombin's catalytic domain: a differential scanning calorimetric study.
    Lentz BR; Zhou CM; Wu JR
    Biochemistry; 1994 May; 33(18):5460-8. PubMed ID: 8180168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The PT1-Ca2+ Gla domain binds to a membrane through two dipalmitoylphosphatidylserines. A computational study.
    Rodríguez Y; Mezei M; Osman R
    Biochemistry; 2008 Dec; 47(50):13267-78. PubMed ID: 19086158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of endostatin to phosphatidylserine-containing membranes and formation of amyloid-like fibers.
    Zhao H; Jutila A; Nurminen T; Wickström SA; Keski-Oja J; Kinnunen PK
    Biochemistry; 2005 Mar; 44(8):2857-63. PubMed ID: 15723529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of beta2-glycoprotein 1 with phosphatidylserine-containing membranes: ligand-dependent conformational alterations initiate bivalent binding.
    Hamdan R; Maiti SN; Schroit AJ
    Biochemistry; 2007 Sep; 46(37):10612-20. PubMed ID: 17715943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of alpha-helix in the beta-sheet protein tumor necrosis factor-alpha: acid-induced denaturation.
    Narhi LO; Philo JS; Li T; Zhang M; Samal B; Arakawa T
    Biochemistry; 1996 Sep; 35(35):11454-60. PubMed ID: 8784201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation in lipid bilayers of a synthetic peptide representing the C-terminus of the A1 domain of shiga toxin. A polarized ATR-FTIR study.
    Menikh A; Saleh MT; Gariépy J; Boggs JM
    Biochemistry; 1997 Dec; 36(50):15865-72. PubMed ID: 9398319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of vitamin K-dependent blood coagulation proteins to spread phospholipid monolayers as determined from combined measurements of the surface pressure and surface protein concentration.
    Ellison EH; Castellino FJ
    Biochemistry; 1998 Jun; 37(22):7997-8003. PubMed ID: 9609692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of prion protein to lipid membranes and implications for prion conversion.
    Sanghera N; Pinheiro TJ
    J Mol Biol; 2002 Feb; 315(5):1241-56. PubMed ID: 11827491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of histone H1 with phospholipids and comparison of its binding to giant liposomes and human leukemic T cells.
    Zhao H; Bose S; Tuominen EK; Kinnunen PK
    Biochemistry; 2004 Aug; 43(31):10192-202. PubMed ID: 15287747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.