These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 8091455)
21. Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide. Mayhan WG; Didion SP Stroke; 1996 May; 27(5):965-9; discussion 970. PubMed ID: 8623120 [TBL] [Abstract][Full Text] [Related]
22. Comparison of effects of chronic and acute administration of NG-nitro-L-arginine methyl ester to the rat on inhibition of nitric oxide-mediated responses. Bryant CE; Allcock GH; Warner TD Br J Pharmacol; 1995 Apr; 114(8):1673-9. PubMed ID: 7541283 [TBL] [Abstract][Full Text] [Related]
23. Opioids and nitric oxide contribute to hypoxia-induced pial arterial vasodilation in newborn pigs. Armstead WM Am J Physiol; 1995 Jan; 268(1 Pt 2):H226-32. PubMed ID: 7530918 [TBL] [Abstract][Full Text] [Related]
24. Effects of NG-nitro-L-arginine on isolated rabbit afferent arterioles. Tamaki T; Hasui K; Aki Y; Kimura S; Abe Y Jpn J Pharmacol; 1993 Jul; 62(3):231-7. PubMed ID: 8411772 [TBL] [Abstract][Full Text] [Related]
25. Nitric oxide regulates cerebral arteriolar tone in rats. Kimura M; Dietrich HH; Dacey RG Stroke; 1994 Nov; 25(11):2227-33; discussion 2233-4. PubMed ID: 7974550 [TBL] [Abstract][Full Text] [Related]
26. Sex difference in nitric oxide synthase-dependent dilatation of cerebral arterioles during long-term alcohol consumption. Sun H; Mayhan WG Alcohol Clin Exp Res; 2005 Mar; 29(3):430-6. PubMed ID: 15770119 [TBL] [Abstract][Full Text] [Related]
27. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation. Jones CJ; DeFily DV; Patterson JL; Chilian WM Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938 [TBL] [Abstract][Full Text] [Related]
28. Role of nitric oxide, adenosine, N-methyl-D-aspartate receptors, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats. Pelligrino DA; Wang Q; Koenig HM; Albrecht RF Brain Res; 1995 Dec; 704(1):61-70. PubMed ID: 8750962 [TBL] [Abstract][Full Text] [Related]
29. Cerebral blood flow and cerebrovascular reactivity after inhibition of nitric oxide synthesis in conscious goats. Fernández N; García JL; García-Villalón AL; Monge L; Gómez B; Diéguez G Br J Pharmacol; 1993 Sep; 110(1):428-34. PubMed ID: 8220904 [TBL] [Abstract][Full Text] [Related]
30. H2O2 and endothelium-dependent cerebral arteriolar dilation. Implications for the identity of endothelium-derived relaxing factor generated by acetylcholine. Wei EP; Kontos HA Hypertension; 1990 Aug; 16(2):162-9. PubMed ID: 2379949 [TBL] [Abstract][Full Text] [Related]
31. Mechanisms of adrenomedullin-induced dilatation of cerebral arterioles. Lang MG; Paternò R; Faraci FM; Heistad DD Stroke; 1997 Jan; 28(1):181-5. PubMed ID: 8996509 [TBL] [Abstract][Full Text] [Related]
32. Muscarinic--but not nicotinic--acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. Elhusseiny A; Hamel E J Cereb Blood Flow Metab; 2000 Feb; 20(2):298-305. PubMed ID: 10698067 [TBL] [Abstract][Full Text] [Related]
33. Contributions of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles. Wang D; Borrego-Conde LJ; Falck JR; Sharma KK; Wilcox CS; Umans JG Kidney Int; 2003 Jun; 63(6):2187-93. PubMed ID: 12753306 [TBL] [Abstract][Full Text] [Related]
34. Nicorandil protects pial arterioles from endothelial dysfunction induced by smoking in rats. Iwata K; Iida H; Iida M; Takenaka M; Tanabe K; Fukuoka N; Uchida M J Neurosurg Anesthesiol; 2013 Oct; 25(4):392-8. PubMed ID: 23660509 [TBL] [Abstract][Full Text] [Related]
35. Mechanisms of endotoxin-induced dilatation of cerebral arterioles. Brian JE; Heistad DD; Faraci FM Am J Physiol; 1995 Sep; 269(3 Pt 2):H783-8. PubMed ID: 7573518 [TBL] [Abstract][Full Text] [Related]
36. Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca(2+)-dependent K+ channels. Taguchi H; Heistad DD; Kitazono T; Faraci FM Circ Res; 1995 Jun; 76(6):1057-62. PubMed ID: 7758160 [TBL] [Abstract][Full Text] [Related]
37. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Koedel U; Bernatowicz A; Paul R; Frei K; Fontana A; Pfister HW Ann Neurol; 1995 Mar; 37(3):313-23. PubMed ID: 7535035 [TBL] [Abstract][Full Text] [Related]
38. Role of soluble guanylate cyclase in dilator responses of the cerebral microcirculation. Faraci FM; Sobey CG Brain Res; 1999 Mar; 821(2):368-73. PubMed ID: 10064823 [TBL] [Abstract][Full Text] [Related]
39. Role of nitric oxide and cAMP in prostaglandin-induced pial arterial vasodilation. Armstead WM Am J Physiol; 1995 Apr; 268(4 Pt 2):H1436-40. PubMed ID: 7733344 [TBL] [Abstract][Full Text] [Related]
40. Nitric oxide involvement in hypoxic dilation of pial arteries in the cat. Ishimura N; Kitaguchi K; Tatsumi K; Furuya H Anesthesiology; 1996 Dec; 85(6):1350-6. PubMed ID: 8968182 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]