BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8092)

  • 1. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability.
    Voordouw G; Milo C; Roche RS
    Biochemistry; 1976 Aug; 15(17):3716-24. PubMed ID: 8092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of bound calcium ions in thermostable, proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4667-73. PubMed ID: 1182109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease.
    Tajima M; Urabe I; Yutani K; Okada H
    Eur J Biochem; 1976 Apr; 64(1):243-7. PubMed ID: 819262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of bound calcium ions in thermostable, proteolytic enzymes. I. Studies on thermomycolase, the thermostable protease fron the fungus Malbranchea pulchella.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4659-66. PubMed ID: 1182108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Calcium in the thermal stability of thermolysin.
    Dahlquist FW; Long JW; Bigbee WL
    Biochemistry; 1976 Mar; 15(5):1103-11. PubMed ID: 814920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability of homologous neutral metalloendopeptidases in thermophilic and mesophilic bacteria: structural considerations.
    Pangburn MK; Levy PL; Walsh KA; Neurath H
    Experientia Suppl; 1976; 26():19-30. PubMed ID: 820564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostability at ultrahigh temperatures of thermolysin and a protease from a psychrotrophic Pseudomonas.
    Barach JT; Adams DM
    Biochim Biophys Acta; 1977 Dec; 485(2):417-23. PubMed ID: 411519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of calcium binding on the thermal stability of 'thermitase', a serine protease from Thermoactinomyces vulgaris.
    Frömmel C; Höhne WE
    Biochim Biophys Acta; 1981 Aug; 670(1):25-31. PubMed ID: 7023547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding.
    Pantoliano MW; Whitlow M; Wood JF; Dodd SW; Hardman KD; Rollence ML; Bryan PN
    Biochemistry; 1989 Sep; 28(18):7205-13. PubMed ID: 2684274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of subtilisins and related proteinases (subtilases).
    Genov N; Filippi B; Dolashka P; Wilson KS; Betzel C
    Int J Pept Protein Res; 1995 Apr; 45(4):391-400. PubMed ID: 7601614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermolysin and Bacillus subtilis neutral protease. Conformation and stability of two homologous neutral metalloendopeptidases.
    Grandi C; Vita C; Dalzoppo D; Fontana A
    Int J Pept Protein Res; 1980 Oct; 16(4):327-38. PubMed ID: 6780484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and stability of thermophilic enzymes. Studies on thermolysin.
    Fontana A
    Biophys Chem; 1988 Feb; 29(1-2):181-93. PubMed ID: 3129040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel thermostable neutral proteinase from Saccharomonospora canescens.
    Dolashka P; Georgieva DN; Stoeva S; Genov N; Rachev R; Gusterova A; Voelter W
    Biochim Biophys Acta; 1998 Feb; 1382(2):207-16. PubMed ID: 9540792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific and random immobilization of thermolysin-like proteases reflected in the thermal inactivation kinetics.
    Mansfeld J; Ulbrich-Hofmann R
    Biotechnol Appl Biochem; 2000 Dec; 32(3):189-95. PubMed ID: 11115391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure dependence of thermolysin catalysis.
    Fukuda M; Kunugi S
    Eur J Biochem; 1984 Aug; 142(3):565-70. PubMed ID: 6432533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited proteolysis of thermolysin by subtilisin: isolation and characterization of a partially active enzyme derivative.
    Vita C; Dalzoppo D; Fontana A
    Biochemistry; 1985 Mar; 24(7):1798-806. PubMed ID: 3890941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Esterase activity of zinc neutral proteases.
    Holmquist B; Vallee BL
    Biochemistry; 1976 Jan; 15(1):101-7. PubMed ID: 2276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single calcium binding site is crucial for the calcium-dependent thermal stability of thermolysin-like proteases.
    Veltman OR; Vriend G; Berendsen HJ; Van den Burg B; Venema G; Eijsink VG
    Biochemistry; 1998 Apr; 37(15):5312-9. PubMed ID: 9548763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of site-directed mutagenesis in the N-terminal domain of thermolysin on its stabilization.
    Kawasaki Y; Yasukawa K; Inouye K
    J Biochem; 2013 Jan; 153(1):85-92. PubMed ID: 23087322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.