These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Measurement of gaseous microemboli in the prime before the initiation of cardiopulmonary bypass. Husebråten IM; Fiane AE; Ringdal MIL; Thiara APS Perfusion; 2018 Jan; 33(1):30-35. PubMed ID: 28784030 [TBL] [Abstract][Full Text] [Related]
7. Poly-ADP-ribose polymerase inhibition reduces mesenteric injury after cardiopulmonary bypass. Szabó G; Seres L; Soós P; Flechtenmacher C; Zsengellér Z; Sack FU; Szabó C; Hagl S Thorac Cardiovasc Surg; 2004 Dec; 52(6):338-43. PubMed ID: 15573274 [TBL] [Abstract][Full Text] [Related]
8. Phenylephrine does not reduce cerebral perfusion during canine cardiopulmonary bypass. Johnston WE; DeWitt DS; Vinten-Johansen J; Stump DA; Prough DS Anesth Analg; 1994 Jul; 79(1):14-8. PubMed ID: 8010425 [TBL] [Abstract][Full Text] [Related]
9. EDHF mediates the relaxation of stretched canine femoral arteries to acetylcholine. Woodley N; Meunier RL; Barclay JK Can J Physiol Pharmacol; 2001 Nov; 79(11):924-31. PubMed ID: 11760094 [TBL] [Abstract][Full Text] [Related]
10. In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures. Dhami R; Wang S; Kunselman AR; Ündar A Artif Organs; 2014 Jan; 38(1):56-63. PubMed ID: 23876021 [TBL] [Abstract][Full Text] [Related]
11. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators. Padayachee TS; Parsons S; Theobold R; Linley J; Gosling RG; Deverall PB Ann Thorac Surg; 1987 Sep; 44(3):298-302. PubMed ID: 2957966 [TBL] [Abstract][Full Text] [Related]
12. The influence of gaseous microemboli on various biomarkers after minimized cardiopulmonary bypass. Stehouwer MC; de Vroege R; Bruggemans EF; Hofman FN; Molenaar MA; van Oeveren W; de Mol BA; Bruins P Perfusion; 2020 Apr; 35(3):202-208. PubMed ID: 31402782 [TBL] [Abstract][Full Text] [Related]
13. Mesenteric endothelial dysfunction in a cardiopulmonary bypass rat model: the effect of diabetes. Le Guillou V; Tamion F; Jouet I; Richard V; Mulder P; Bessou JP; Doguet F Diab Vasc Dis Res; 2012 Oct; 9(4):270-9. PubMed ID: 22278737 [TBL] [Abstract][Full Text] [Related]
14. Heart failure depresses endothelium-dependent responses in canine femoral artery. Kaiser L; Spickard RC; Olivier NB Am J Physiol; 1989 Apr; 256(4 Pt 2):H962-7. PubMed ID: 2705566 [TBL] [Abstract][Full Text] [Related]
16. Endothelial dysfunction in cerebral microcirculation during hypothermic cardiopulmonary bypass in newborn lambs. Wagerle LC; Russo P; Dahdah NS; Kapadia N; Davis DA J Thorac Cardiovasc Surg; 1998 May; 115(5):1047-54. PubMed ID: 9605074 [TBL] [Abstract][Full Text] [Related]
17. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. De Somer F J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817 [TBL] [Abstract][Full Text] [Related]
18. Effect of recombinant aprotinin on postoperative blood loss and coronary vascular function in a canine model of cardiopulmonary bypass. Veres G; Radovits T; Schultz H; Lin LN; Hütter J; Weigang E; Szabolcs Z; Szabó G Eur J Cardiothorac Surg; 2007 Aug; 32(2):340-5. PubMed ID: 17500000 [TBL] [Abstract][Full Text] [Related]
19. Reduced agonist-induced endothelium-dependent vasodilation in uremia is attributable to an impairment of vascular nitric oxide. Passauer J; Pistrosch F; Büssemaker E; Lässig G; Herbrig K; Gross P J Am Soc Nephrol; 2005 Apr; 16(4):959-65. PubMed ID: 15728785 [TBL] [Abstract][Full Text] [Related]
20. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass. Padayachee TS; Parsons S; Theobold R; Gosling RG; Deverall PB Ann Thorac Surg; 1988 Jun; 45(6):647-9. PubMed ID: 3288143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]