These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 809287)

  • 1. Acetoin degradation in Bacillus subtilis by direct oxidative cleavage.
    López JM; Thoms B; Rehbein H
    Eur J Biochem; 1975 Sep; 57(2):425-30. PubMed ID: 809287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase.
    Nicholson WL
    Appl Environ Microbiol; 2008 Nov; 74(22):6832-8. PubMed ID: 18820069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin.
    Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for oxidative thiolytic cleavage of acetoin in Pelobacter carbinolicus analogous to aerobic oxidative decarboxylation of pyruvate.
    Oppermann FB; Steinbüchel A; Schlegel HG
    FEMS Microbiol Lett; 1989 Jul; 51(1):113-8. PubMed ID: 2792735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.
    Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L
    Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of acetoin:2,6-dichlorophenolindophenol oxidoreductase, dihydrolipoamide dehydrogenase, and dihydrolipoamide acetyltransferase of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system.
    Oppermann FB; Schmidt B; Steinbüchel A
    J Bacteriol; 1991 Jan; 173(2):757-67. PubMed ID: 1898934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis.
    Zhang X; Bao T; Rao Z; Yang T; Xu Z; Yang S; Li H
    PLoS One; 2014; 9(3):e91187. PubMed ID: 24608678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oversynthesis of diacetyl and acetoin in a riboflavin deficient mutant of yeast.
    Nakajima K; Saito A
    Int J Vitam Nutr Res; 1987; 57(3):279-83. PubMed ID: 3316092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase.
    Zhang X; Zhang R; Yang T; Zhang J; Xu M; Li H; Xu Z; Rao Z
    World J Microbiol Biotechnol; 2013 Oct; 29(10):1783-9. PubMed ID: 23549901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the diacetyl and 2,3-pentanedione reduction by diacetyl reductase (alpha-diketone reductase (NAD)) from Staphylococcus aureus.
    González J; Vidal I; Bernardo A; Martin R
    Biochimie; 1988 Dec; 70(12):1791-7. PubMed ID: 3150685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutants of Bacillus subtilis blocked in acetoin reductase.
    López J; Thoms B; Fortnagel P
    Eur J Biochem; 1973 Dec; 40(2):479-83. PubMed ID: 4205556
    [No Abstract]   [Full Text] [Related]  

  • 13. A detoxication route for acetaldehyde: metabolism of diacetyl, acetoin, and 2,3-butanediol in liver homogenate and perfused liver of rats.
    Otsuka M; Mine T; Ohuchi K; Ohmori S
    J Biochem; 1996 Feb; 119(2):246-51. PubMed ID: 8882713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possibility of diacetyl and related compounds as the 4-carbon compound necessary for the formation of riboflavin in Ashbya gossypii.
    Nakajima K; Mitsuda H
    Acta Vitaminol Enzymol; 1984; 6(4):271-82. PubMed ID: 6534171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Acetoin metabolism in animal tissues].
    Zavodnik IB; Buko VU; Ostrovskiĭ IuM
    Ukr Biokhim Zh (1978); 1988; 60(4):58-62. PubMed ID: 3188258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis.
    Ali NO; Bignon J; Rapoport G; Debarbouille M
    J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and enzymatic characterization of Bacillus subtilis R,R-2,3-butanediol dehydrogenase.
    Wang X; Jia L; Ji F
    Biochim Biophys Acta Gen Subj; 2023 Apr; 1867(4):130326. PubMed ID: 36781054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S
    Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoprene formation in Bacillus subtilis: a barometer of central carbon assimilation in a bioreactor?
    Shirk MC; Wagner WP; Fall R
    Biotechnol Prog; 2002; 18(5):1109-15. PubMed ID: 12363365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.