BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 8092986)

  • 1. Replacement of both tryptophan residues at 388 and 412 completely abolished cytochalasin B photolabelling of the GLUT1 glucose transporter.
    Inukai K; Asano T; Katagiri H; Anai M; Funaki M; Ishihara H; Tsukuda K; Kikuchi M; Yazaki Y; Oka Y
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):355-61. PubMed ID: 8092986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution of leucine for tryptophan 412 does not abolish cytochalasin B labeling but markedly decreases the intrinsic activity of GLUT1 glucose transporter.
    Katagiri H; Asano T; Shibasaki Y; Lin JL; Tsukuda K; Ishihara H; Akanuma Y; Takaku F; Oka Y
    J Biol Chem; 1991 Apr; 266(12):7769-73. PubMed ID: 2019601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of tryptophan-388 of GLUT1 glucose transporter in glucose-transport activity and photoaffinity-labelling with forskolin.
    Katagiri H; Asano T; Ishihara H; Lin JL; Inukai K; Shanahan MF; Tsukuda K; Kikuchi M; Yazaki Y; Oka Y
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):861-7. PubMed ID: 8489512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes.
    Garcia JC; Strube M; Leingang K; Keller K; Mueckler MM
    J Biol Chem; 1992 Apr; 267(11):7770-6. PubMed ID: 1560011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation.
    Mori H; Hashiramoto M; Clark AE; Yang J; Muraoka A; Tamori Y; Kasuga M; Holman GD
    J Biol Chem; 1994 Apr; 269(15):11578-83. PubMed ID: 8157690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution at Pro385 of GLUT1 perturbs the glucose transport function by reducing conformational flexibility.
    Tamori Y; Hashiramoto M; Clark AE; Mori H; Muraoka A; Kadowaki T; Holman GD; Kasuga M
    J Biol Chem; 1994 Jan; 269(4):2982-6. PubMed ID: 8300630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the structural features of the C-terminus of GLUT1 that are required for transport catalytic activity.
    Muraoka A; Hashiramoto M; Clark AE; Edwards LC; Sakura H; Kadowaki T; Holman GD; Kasuga M
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):699-704. PubMed ID: 7487915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of N-glycosylation of GLUT1 for glucose transport activity.
    Asano T; Katagiri H; Takata K; Lin JL; Ishihara H; Inukai K; Tsukuda K; Kikuchi M; Hirano H; Yazaki Y
    J Biol Chem; 1991 Dec; 266(36):24632-6. PubMed ID: 1761560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of GLUT1 in helix 7 residue 282 results in perturbation of exofacial ligand binding.
    Hashiramoto M; Kadowaki T; Clark AE; Muraoka A; Momomura K; Sakura H; Tobe K; Akanuma Y; Yazaki Y; Holman GD
    J Biol Chem; 1992 Sep; 267(25):17502-7. PubMed ID: 1517202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose transport activity and photolabelling with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (IAPS)-forskolin of two mutants at tryptophan-388 and -412 of the glucose transporter GLUT1: dissociation of the binding domains of forskolin and glucose.
    Schürmann A; Keller K; Monden I; Brown FM; Wandel S; Shanahan MF; Joost HG
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):497-501. PubMed ID: 8452538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of intracellular C-terminal domain of GLUT1 glucose transporter with that of GLUT2 increases Vmax and Km of transport activity.
    Katagiri H; Asano T; Ishihara H; Tsukuda K; Lin JL; Inukai K; Kikuchi M; Yazaki Y; Oka Y
    J Biol Chem; 1992 Nov; 267(31):22550-5. PubMed ID: 1429604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glucose transport activity of GLUT1 is markedly decreased by substitution of a single amino acid with a different charge at residue 415.
    Ishihara H; Asano T; Katagiri H; Lin JL; Tsukuda K; Shibasaki Y; Yazaki Y; Oka Y
    Biochem Biophys Res Commun; 1991 Apr; 176(2):922-30. PubMed ID: 2025301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The differential role of Cys-421 and Cys-429 of the Glut1 glucose transporter in transport inhibition by p-chloromercuribenzenesulfonic acid (pCMBS) or cytochalasin B (CB).
    Wellner M; Monden I; Keller K
    FEBS Lett; 1992 Sep; 309(3):293-6. PubMed ID: 1325374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centrifugal and chromatographic analyses of tryptophan and tyrosine uptake by red blood cells and GLUT1 proteoliposomes with permeability estimates and observations on dihydrocytochalasin B.
    Lagerquist Hägglund C; Lundahl P
    J Biochem Biophys Methods; 2003 Feb; 55(2):127-40. PubMed ID: 12628696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins.
    Burant CF; Bell GI
    Biochemistry; 1992 Oct; 31(42):10414-20. PubMed ID: 1420159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function.
    Schürmann A; Doege H; Ohnimus H; Monser V; Buchs A; Joost HG
    Biochemistry; 1997 Oct; 36(42):12897-902. PubMed ID: 9335548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of GLUT3 protein expressed in Chinese hamster ovary cells.
    Asano T; Katagiri H; Takata K; Tsukuda K; Lin JL; Ishihara H; Inukai K; Hirano H; Yazaki Y; Oka Y
    Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):189-93. PubMed ID: 1445263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High concentration of glucose decreases glucose transporter-1 expression in mouse placenta in vitro and in vivo.
    Ogura K; Sakata M; Yamaguchi M; Kurachi H; Murata Y
    J Endocrinol; 1999 Mar; 160(3):443-52. PubMed ID: 10076190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar.
    McDonald TP; Walmsley AR; Henderson PJ
    J Biol Chem; 1997 Jun; 272(24):15189-99. PubMed ID: 9182541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium increases GLUT1 substrate binding affinity in vitro while reducing its cytochalasin B binding affinity.
    Lachaal M; Liu H; Kim S; Spangler RA; Jung CY
    Biochemistry; 1996 Nov; 35(47):14958-62. PubMed ID: 8942661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.