BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 8093697)

  • 1. High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation.
    Kuroda A; Sekiguchi J
    J Bacteriol; 1993 Feb; 175(3):795-801. PubMed ID: 8093697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of degS-degU mutations on the expression of sigD, encoding an alternative sigma factor, and autolysin operon of Bacillus subtilis.
    Tokunaga T; Rashid MH; Kuroda A; Sekiguchi J
    J Bacteriol; 1994 Aug; 176(16):5177-80. PubMed ID: 7914190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product.
    Kuroda A; Rashid MH; Sekiguchi J
    J Gen Microbiol; 1992 Jun; 138(6):1067-76. PubMed ID: 1356138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of mecA and mecB (clpC) mutations on expression of sigD, which encodes an alternative sigma factor, and autolysin operons and on flagellin synthesis in Bacillus subtilis.
    Rashid MH; Tamakoshi A; Sekiguchi J
    J Bacteriol; 1996 Aug; 178(16):4861-9. PubMed ID: 8759849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis.
    Ishikawa S; Hara Y; Ohnishi R; Sekiguchi J
    J Bacteriol; 1998 May; 180(9):2549-55. PubMed ID: 9573210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. flaD (sinR) mutations affect SigD-dependent functions at multiple points in Bacillus subtilis.
    Rashid MH; Sekiguchi J
    J Bacteriol; 1996 Nov; 178(22):6640-3. PubMed ID: 8932324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the SinR protein on the expression of the Bacillus subtilis 168 lytABC operon.
    Margot P; Lazarevic V; Karamata D
    Microb Drug Resist; 1996; 2(1):119-21. PubMed ID: 9158733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis.
    Kuroda A; Asami Y; Sekiguchi J
    J Bacteriol; 1993 Oct; 175(19):6260-8. PubMed ID: 8407798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis.
    Sekiguchi J; Akeo K; Yamamoto H; Khasanov FK; Alonso JC; Kuroda A
    J Bacteriol; 1995 Oct; 177(19):5582-9. PubMed ID: 7559346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase.
    Kalman S; Duncan ML; Thomas SM; Price CW
    J Bacteriol; 1990 Oct; 172(10):5575-85. PubMed ID: 2170324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the sigD transcription unit of Bacillus subtilis.
    Márquez-Magaña LM; Chamberlin MJ
    J Bacteriol; 1994 Apr; 176(8):2427-34. PubMed ID: 8157612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals.
    Wise AA; Price CW
    J Bacteriol; 1995 Jan; 177(1):123-33. PubMed ID: 8002610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores.
    Henriques AO; Beall BW; Roland K; Moran CP
    J Bacteriol; 1995 Jun; 177(12):3394-406. PubMed ID: 7768848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation.
    Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL
    J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and nucleotide sequence of the Bacillus subtilis ansR gene, which encodes a repressor of the ans operon coding for L-asparaginase and L-aspartase.
    Sun D; Setlow P
    J Bacteriol; 1993 May; 175(9):2501-6. PubMed ID: 8478318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis.
    Ali NO; Bignon J; Rapoport G; Debarbouille M
    J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of a second SigH promoter in the Bacillus subtilis sigA operon and regulation of dnaE expression by the promoter.
    Qi FX; Doi RH
    J Bacteriol; 1990 Oct; 172(10):5631-6. PubMed ID: 1698762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier.
    Lazarevic V; Margot P; Soldo B; Karamata D
    J Gen Microbiol; 1992 Sep; 138(9):1949-61. PubMed ID: 1357079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postexponential regulation of sin operon expression in Bacillus subtilis.
    Shafikhani SH; Mandic-Mulec I; Strauch MA; Smith I; Leighton T
    J Bacteriol; 2002 Jan; 184(2):564-71. PubMed ID: 11751836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon.
    Gonzy-Tréboul G; Karmazyn-Campelli C; Stragier P
    J Mol Biol; 1992 Apr; 224(4):967-79. PubMed ID: 1569582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.