These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8093898)

  • 1. Segmental recovery of amino acid neurotransmitters during posterior epidural stimulation after spinal cord injury.
    Simpson RK; Robertson CS; Goodman JC
    J Am Paraplegia Soc; 1993 Jan; 16(1):34-41. PubMed ID: 8093898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of amino acid neurotransmitters from the spinal cord during posterior epidural stimulation: a preliminary study.
    Simpson RK; Robertson CS; Goodman JC; Halter JA
    J Am Paraplegia Soc; 1991 Jan; 14(1):3-8. PubMed ID: 1673708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of glycine in spinal shock.
    Simpson RK; Robertson CS; Goodman JC
    J Spinal Cord Med; 1996 Oct; 19(4):215-24. PubMed ID: 9237788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmental release of amino acid neurotransmitters from transcranial stimulation.
    Simpson RK; Robertson CS; Goodman JC
    Neurochem Res; 1991 Jan; 16(1):89-94. PubMed ID: 1675777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of segmental amino acid neurotransmitters in response to peripheral afferent and motor cortex stimulation: a pilot study.
    Simpson RK; Robertson CS; Goodman JC
    Life Sci; 1991; 49(17):PL113-8. PubMed ID: 1682779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine: an important potential component of spinal shock.
    Simpson RK; Robertson CS; Goodman JC
    Neurochem Res; 1993 Aug; 18(8):887-92. PubMed ID: 8103919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental model combining microdialysis with electrophysiology, histology, and neurochemistry for exploring mechanisms of secondary damage in spinal cord injury: effects of potassium.
    Liu D; McAdoo DJ
    J Neurotrauma; 1993; 10(3):349-62. PubMed ID: 8258846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profound systemic hypothermia inhibits the release of neurotransmitter amino acids in spinal cord ischemia.
    Rokkas CK; Cronin CS; Nitta T; Helfrich LR; Lobner DC; Choi DW; Kouchoukos NT
    J Thorac Cardiovasc Surg; 1995 Jul; 110(1):27-35. PubMed ID: 7609553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dextrorphan inhibits the release of excitatory amino acids during spinal cord ischemia.
    Rokkas CK; Helfrich LR; Lobner DC; Choi DW; Kouchoukos NT
    Ann Thorac Surg; 1994 Aug; 58(2):312-9; discussion 319-20. PubMed ID: 7915102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of impact trauma on neurotransmitter and nonneurotransmitter amino acids in rat spinal cord.
    Demediuk P; Daly MP; Faden AI
    J Neurochem; 1989 May; 52(5):1529-36. PubMed ID: 2565376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury.
    Mayr W; Krenn M; Dimitrijevic MR
    Curr Opin Neurol; 2016 Dec; 29(6):721-726. PubMed ID: 27798422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface and epidural lumbosacral spinal cord evoked potentials in chronic spinal cord injury.
    Stĕtkárová I; Halter JA; Dimitrijevic MR
    J Neurotrauma; 1993; 10(3):315-26. PubMed ID: 8258844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord ischemia-induced elevation of amino acids: extracellular measurement with microdialysis.
    Simpson RK; Robertson CS; Goodman JC
    Neurochem Res; 1990 Jun; 15(6):635-9. PubMed ID: 1977091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in amino acid concentrations over time and space around an impact injury and their diffusion through the rat spinal cord.
    McAdoo DJ; Xu GY; Robak G; Hughes MG
    Exp Neurol; 1999 Oct; 159(2):538-44. PubMed ID: 10506525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidural spinal cord stimulation for the control of spasticity in spinal cord injury patients lacks long-term efficacy and is not cost-effective.
    Midha M; Schmitt JK
    Spinal Cord; 1998 Mar; 36(3):190-2. PubMed ID: 9554020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of taurine and putative amino acid neurotransmitters in eight areas of the canine lumbar spinal cord.
    Lane JD; Smith JE; Hall PV; Campbell RL
    Brain Res; 1978 Aug; 152(2):386-90. PubMed ID: 28170
    [No Abstract]   [Full Text] [Related]  

  • 17. Considerations in the determination by microdialysis of resting extracellular amino acid concentrations and release upon spinal cord injury.
    Xu GY; McAdoo DJ; Hughes MG; Robak G; de Castro R
    Neuroscience; 1998 Oct; 86(3):1011-21. PubMed ID: 9692736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency spinal cord stimulation in a subacute animal model of spinal cord injury.
    DiMarco AF; Kowalski KE
    J Appl Physiol (1985); 2019 Jul; 127(1):98-102. PubMed ID: 31095462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety assessment of epidural wire electrodes for cough production in a chronic pig model of spinal cord injury.
    Kowalski KE; Kowalski T; DiMarco AF
    J Neurosci Methods; 2016 Aug; 268():98-105. PubMed ID: 27168496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidural and transcutaneous spinal cord stimulation facilitates descending inputs to upper-limb motoneurons in monkeys.
    Guiho T; Baker SN; Jackson A
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33540399
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.