These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 809433)

  • 21. The turnover of bacterial luciferase is limited by a slow decomposition of the ternary enzyme-product complex of luciferase, FMN, and fatty acid.
    Li Z; Meighen EA
    J Biol Chem; 1994 Mar; 269(9):6640-4. PubMed ID: 8120017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioluminescence emission from the reaction of luciferase-flavin mononucleotide radical with O2-.
    Kurfürst M; Ghisla S; Hastings JW
    Biochemistry; 1983 Mar; 22(7):1521-5. PubMed ID: 6849864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion.
    Tinikul R; Pitsawong W; Sucharitakul J; Nijvipakul S; Ballou DP; Chaiyen P
    Biochemistry; 2013 Oct; 52(39):6834-43. PubMed ID: 24004065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and properties of bacterial luciferase-oxygenated flavin intermediate complexed with long-chain alcohols.
    Tu SC
    Biochemistry; 1979 Dec; 18(26):5940-5. PubMed ID: 316337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography.
    Hastings JW; Balny C; Peuch CL; Douzou P
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12 Pt 1-2):3468-72. PubMed ID: 16592121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoexcited bacterial bioluminescence. Identity and properties of the photoexcitable luciferase.
    Tu SC; Waters CA; Hastings JW
    Biochemistry; 1975 May; 14(9):1970-4. PubMed ID: 235973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial luciferase requires one reduced flavin for light emission.
    Becvar JE; Hastings JW
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3374-6. PubMed ID: 1059124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics.
    Eckstein JW; Hastings JW; Ghisla S
    Biochemistry; 1993 Jan; 32(2):404-11. PubMed ID: 8422349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioluminophore and Flavin Mononucleotide Fluorescence Quenching of Bacterial Bioluminescence-A Theoretical Study.
    Luo Y; Liu YJ
    Chemistry; 2016 Nov; 22(45):16243-16249. PubMed ID: 27665749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on luciferase form Photobacterium phosphoreum. V. An enzyme-FMN intermediate complex in the bioluminescent reaction.
    Yoshida K; Takahashi M; Nakamura T
    J Biochem; 1974 Mar; 75(3):583-9. PubMed ID: 4834652
    [No Abstract]   [Full Text] [Related]  

  • 31. Bacterial bioluminescence in vivo: control and synthesis of aldehyde factor in temperature-conditional luminescence mutants.
    Cline TW; Hastings JW
    J Bacteriol; 1974 Jun; 118(3):1059-66. PubMed ID: 4829924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives.
    Francisco WA; Abu-Soud HM; Topgi R; Baldwin TO; Raushel FM
    J Biol Chem; 1996 Jan; 271(1):104-10. PubMed ID: 8550543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactions involved in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria.
    Shimomura O; Johnson FH; Kohama Y
    Proc Natl Acad Sci U S A; 1972 Aug; 69(8):2086-9. PubMed ID: 4506078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function.
    Li Z; Meighen EA
    Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activities of the bimodal fluorescent protein produced by Photobacterium phosphoreum strain bmFP in the luciferase reaction in vitro.
    Karatani H; Konaka T
    Photochem Photobiol; 2000 Feb; 71(2):237-42. PubMed ID: 10687400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit.
    Sparks JM; Baldwin TO
    Biochemistry; 2001 Dec; 40(50):15436-43. PubMed ID: 11735428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the mechanisms of the biological intermolecular transfer of reduced flavin.
    Tu SC; Lei B; Liu M; Tang CK; Jeffers C
    J Nutr; 2000 Feb; 130(2S Suppl):331S-332S. PubMed ID: 10721898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide.
    Lee J
    Biochemistry; 1972 Aug; 11(18):3350-9. PubMed ID: 5056079
    [No Abstract]   [Full Text] [Related]  

  • 40. Factors affecting the cellular expression of bacterial luciferase.
    Ulitzur S; Reinhertz A; Hastings JW
    Arch Microbiol; 1981 Mar; 129(1):67-71. PubMed ID: 6971634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.