These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 8094375)
1. Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin. Charles AC; Dirksen ER; Merrill JE; Sanderson MJ Glia; 1993 Feb; 7(2):134-45. PubMed ID: 8094375 [TBL] [Abstract][Full Text] [Related]
2. Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering. Kiedrowski L; Costa E Mol Pharmacol; 1995 Jan; 47(1):140-7. PubMed ID: 7838122 [TBL] [Abstract][Full Text] [Related]
3. Methylmercury mobilizes Ca++ from intracellular stores sensitive to inositol 1,4,5-trisphosphate in NG108-15 cells. Hare MF; Atchison WD J Pharmacol Exp Ther; 1995 Mar; 272(3):1016-23. PubMed ID: 7891311 [TBL] [Abstract][Full Text] [Related]
4. Spontaneous Ca2+ release from a caffeine and ryanodine-sensitive intracellular Ca2+ store in freshly prepared hepatocytes. Osada S; Okano Y; Saji S; Nozawa Y Hepatology; 1994 Feb; 19(2):514-7. PubMed ID: 8294108 [TBL] [Abstract][Full Text] [Related]
6. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Charles AC; Merrill JE; Dirksen ER; Sanderson MJ Neuron; 1991 Jun; 6(6):983-92. PubMed ID: 1675864 [TBL] [Abstract][Full Text] [Related]
7. B1 and B2 kinin receptors mediate distinct patterns of intracellular Ca2+ signaling in single cultured vascular smooth muscle cells. Mathis SA; Criscimagna NL; Leeb-Lundberg LM Mol Pharmacol; 1996 Jul; 50(1):128-39. PubMed ID: 8700105 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of mechanically induced intercellular calcium waves in rabbit articular chondrocytes and in HIG-82 synovial cells. Grandolfo M; Calabrese A; D'Andrea P J Bone Miner Res; 1998 Mar; 13(3):443-53. PubMed ID: 9525345 [TBL] [Abstract][Full Text] [Related]
9. Intercellular calcium waves in cultured enteric glia from neonatal guinea pig. Zhang W; Segura BJ; Lin TR; Hu Y; Mulholland MW Glia; 2003 May; 42(3):252-62. PubMed ID: 12673831 [TBL] [Abstract][Full Text] [Related]
10. Functional coupling between sarcoplasmic reticulum and Na/Ca exchange in single myocytes of guinea-pig and rat heart. Janiak R; Lewartowski B; Langer GA J Mol Cell Cardiol; 1996 Feb; 28(2):253-64. PubMed ID: 8729058 [TBL] [Abstract][Full Text] [Related]
12. Role of the endoplasmic reticulum in shaping calcium dynamics in human lens cells. Williams MR; Riach RA; Collison DJ; Duncan G Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1009-17. PubMed ID: 11274079 [TBL] [Abstract][Full Text] [Related]
13. Proliferation-associated increase in sensitivity of mammary epithelial cells to inositol-1,4,5-trisphosphate. Enomoto K; Furuya K; Yamagishi S; Maeno T Cell Biochem Funct; 1993 Mar; 11(1):55-62. PubMed ID: 8453737 [TBL] [Abstract][Full Text] [Related]
14. Thapsigargin increases cellular free calcium and intracellular sodium concentrations in cultured rat glomerular mesangial cells. Ishikawa S; Fujisawa G; Okada K; Saito T Biochem Biophys Res Commun; 1993 Jul; 194(1):287-93. PubMed ID: 8333842 [TBL] [Abstract][Full Text] [Related]
15. A role for phospholipase C activity but not ryanodine receptors in the initiation and propagation of intercellular calcium waves. Hansen M; Boitano S; Dirksen ER; Sanderson MJ J Cell Sci; 1995 Jul; 108 ( Pt 7)():2583-90. PubMed ID: 7593299 [TBL] [Abstract][Full Text] [Related]
17. Control of calcium spiking frequency in pituitary gonadotrophs by a single-pool cytoplasmic oscillator. Stojilkovic SS; Tomic M; Kukuljan M; Catt KJ Mol Pharmacol; 1994 May; 45(5):1013-21. PubMed ID: 8190091 [TBL] [Abstract][Full Text] [Related]