These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 809446)
1. The influence of compositional variations on bone ingrowth of implanted porous calcium aluminate ceramics. Graves GA; Noyes FR; Villanueva AR J Biomed Mater Res; 1975 Jul; 9(4):17-22. PubMed ID: 809446 [TBL] [Abstract][Full Text] [Related]
2. Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants. Pabbruwe MB; Standard OC; Sorrell CC; Howlett CR Biomaterials; 2004 Sep; 25(20):4901-10. PubMed ID: 15109850 [TBL] [Abstract][Full Text] [Related]
3. Growth of bone marrow cells on porous ceramics in vitro. Uchida A; Nade S; McCartney E; Ching W J Biomed Mater Res; 1987 Jan; 21(1):1-10. PubMed ID: 3558435 [TBL] [Abstract][Full Text] [Related]
4. Thermodifferential analysis of ceramic implants. Cini I; Pizzoferrato A; Trentani C; Sandrolini S; Paltrinieri M J Biomed Mater Res; 1975 Sep; 9(5):441-51. PubMed ID: 1176519 [TBL] [Abstract][Full Text] [Related]
5. Electrical stimulation of bone growth into porous A12O3. Weinstein AM; Klawitter JJ; Cleveland TW J Biomed Mater Res; 1976 Mar; 10(2):231-47. PubMed ID: 1254614 [TBL] [Abstract][Full Text] [Related]
6. Porous ceramic vehicles for rat-marrow-derived (Rattus norvegicus) osteogenic cell delivery: effects of pre-treatment with fibronectin or laminin. Dennis JE; Caplan AI J Oral Implantol; 1993; 19(2):106-15; discussion 136-7. PubMed ID: 8246297 [TBL] [Abstract][Full Text] [Related]
7. Bone-bonding behavior under load-bearing conditions of an alumina ceramic implant incorporating beads coated with glass-ceramic containing apatite and wollastonite. Li ZL; Kitsugi T; Yamamuro T; Chang YS; Senaha Y; Takagi H; Nakamura T; Oka M J Biomed Mater Res; 1995 Sep; 29(9):1081-8. PubMed ID: 8567706 [TBL] [Abstract][Full Text] [Related]
8. Tissue ingrowth of Replamineform implants. Chiroff RT; White EW; Weber KN; Roy DM J Biomed Mater Res; 1975 Jul; 9(4):29-45. PubMed ID: 1176509 [TBL] [Abstract][Full Text] [Related]
9. Effect of silicon doping on bone formation within alumina porous domains. Pabbruwe MB; Standard OC; Sorrell CC; Howlett CR J Biomed Mater Res A; 2004 Nov; 71(2):250-7. PubMed ID: 15386488 [TBL] [Abstract][Full Text] [Related]
10. Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies. Nade S; Armstrong L; McCartney E; Baggaley B Clin Orthop Relat Res; 1983 Dec; (181):255-63. PubMed ID: 6315286 [TBL] [Abstract][Full Text] [Related]
11. Heterotopic osteogenesis in porous ceramics induced by marrow cells. Ohgushi H; Goldberg VM; Caplan AI J Orthop Res; 1989; 7(4):568-78. PubMed ID: 2544711 [TBL] [Abstract][Full Text] [Related]
12. [Histological investigations at the interface between bone tissue and calcium-phosphate, calcium-aluminate and aluminum-oxide ceramics (author's transl)]. Köster K; Heide H; König R Z Orthop Ihre Grenzgeb; 1977 Oct; 115(5):693-9. PubMed ID: 337709 [No Abstract] [Full Text] [Related]
13. Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone. Nimb L; Jensen JS; Gotfredsen K J Biomed Mater Res; 1995 Dec; 29(12):1477-82. PubMed ID: 8600137 [TBL] [Abstract][Full Text] [Related]
14. Animal studies on bone ingrowth kinetics of ceramic material under dynamic stress. Dörre E; Geduldig D; Happel M; Lade R; Prüssner P; Willert HG; Zichner L J Biomed Mater Res; 1976 Jul; 10(4):493-502. PubMed ID: 947912 [TBL] [Abstract][Full Text] [Related]
15. Influence of hydroxyapatite microstructure on human bone cell response. Rouahi M; Gallet O; Champion E; Dentzer J; Hardouin P; Anselme K J Biomed Mater Res A; 2006 Aug; 78(2):222-35. PubMed ID: 16628709 [TBL] [Abstract][Full Text] [Related]
16. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy. Neo M; Kotani S; Fujita Y; Nakamura T; Yamamuro T; Bando Y; Ohtsuki C; Kokubo T J Biomed Mater Res; 1992 Feb; 26(2):255-67. PubMed ID: 1569117 [TBL] [Abstract][Full Text] [Related]
17. Analysis of primary bone formation in porous alumina: a fluorescence and scanning electron microscopic study of marrow cell induced osteogenesis. Okumura M; Ohgushi H; Takakura Y; van Blitterswijk CA; Koerten HK Biomed Mater Eng; 1992; 2(4):191-201. PubMed ID: 1483121 [TBL] [Abstract][Full Text] [Related]
18. Effect of resorbable calcium aluminate ceramics on regulation of calcium and phosphorus in rats. Carvalho BA; Bajpai PK; Graves GA Biomedicine; 1976 Jun; 25(4):130-3. PubMed ID: 953147 [TBL] [Abstract][Full Text] [Related]
19. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
20. Direct electron microscopy studies of the bone-hydroxylapatite interface. Tracy BM; Doremus RH J Biomed Mater Res; 1984 Sep; 18(7):719-26. PubMed ID: 6544773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]