BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 8094561)

  • 21. Antibodies to nerve growth factor (NGF) prolong the sensitive period for monocular deprivation in the rat.
    Domenici L; Cellerino A; Berardi N; Cattaneo A; Maffei L
    Neuroreport; 1994 Oct; 5(16):2041-4. PubMed ID: 7865740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monocular deprivation decreases the expression of messenger RNA for brain-derived neurotrophic factor in the rat visual cortex.
    Bozzi Y; Pizzorusso T; Cremisi F; Rossi FM; Barsacchi G; Maffei L
    Neuroscience; 1995 Dec; 69(4):1133-44. PubMed ID: 8848102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of monocular enucleation on parvalbumin in rat visual system during postnatal development.
    Hada Y; Yamada Y; Imamura K; Mataga N; Watanabe Y; Yamamoto M
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2535-45. PubMed ID: 10509647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NGF prevents the changes induced by monocular deprivation during the critical period in rats.
    Yan HQ; Mazow ML; Dafny N
    Brain Res; 1996 Jan; 706(2):318-22. PubMed ID: 8822375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus.
    Kutcher MR; Duffy KR
    Vis Neurosci; 2007; 24(6):775-85. PubMed ID: 17915043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine.
    Kasamatsu T; Pettigrew JD
    J Comp Neurol; 1979 May; 185(1):139-61. PubMed ID: 429612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid restoration of functional input to the visual cortex of the cat after brief monocular deprivation.
    Blakemore C; Hawken MJ
    J Physiol; 1982 Jun; 327():463-87. PubMed ID: 7120147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice.
    Jaepel J; Hübener M; Bonhoeffer T; Rose T
    Nat Neurosci; 2017 Dec; 20(12):1708-1714. PubMed ID: 29184207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anatomical correlates of functional plasticity in mouse visual cortex.
    Antonini A; Fagiolini M; Stryker MP
    J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation.
    Shatz CJ; Stryker MP
    J Physiol; 1978 Aug; 281():267-83. PubMed ID: 702379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exogenous supply of nerve growth factor prevents the effects of strabismus in the rat.
    Domenici L; Parisi V; Maffei L
    Neuroscience; 1992 Nov; 51(1):19-24. PubMed ID: 1334536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Infusion of nerve growth factor (NGF) into kitten visual cortex increases immunoreactivity for NGF, NGF receptors, and choline acetyltransferase in basal forebrain without affecting ocular dominance plasticity or column development.
    Silver MA; Fagiolini M; Gillespie DC; Howe CL; Frank MG; Issa NP; Antonini A; Stryker MP
    Neuroscience; 2001; 108(4):569-85. PubMed ID: 11738495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of monocular deprivation on the cat's geniculate neurons projecting to both areas 17 and 18.
    Geisert EE
    J Comp Neurol; 1987 Jan; 255(3):416-24. PubMed ID: 3819022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system.
    Berardi N; Cellerino A; Domenici L; Fagiolini M; Pizzorusso T; Cattaneo A; Maffei L
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):684-8. PubMed ID: 8290581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monocular and binocular deprivation in the monkey: morphological effects and reversibility.
    Vital-Durand F; Garey LJ; Blakemore C
    Brain Res; 1978 Dec; 158(1):45-64. PubMed ID: 21348351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synaptic density in geniculocortical afferents remains constant after monocular deprivation in the cat.
    Silver MA; Stryker MP
    J Neurosci; 1999 Dec; 19(24):10829-42. PubMed ID: 10594065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity.
    Chapman B; Jacobson MD; Reiter HO; Stryker MP
    Nature; 1986 Nov 13-19; 324(6093):154-6. PubMed ID: 3785380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.