BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8094752)

  • 1. Tubular secretion and reabsorption of mercury compounds in mouse kidney.
    Tanaka-Kagawa T; Naganuma A; Imura N
    J Pharmacol Exp Ther; 1993 Feb; 264(2):776-82. PubMed ID: 8094752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic anion transport and action of gamma-glutamyl transpeptidase in kidney linked mechanistically to renal tubular uptake of inorganic mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1995 Jun; 132(2):289-98. PubMed ID: 7785056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depletion of glutathione in the kidney and the renal disposition of administered inorganic mercury.
    Zalups RK; Lash LH
    Drug Metab Dispos; 1997 Apr; 25(4):516-23. PubMed ID: 9107552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of inhibition of gamma-glutamyltranspeptidase on biliary and urinary excretion of glutathione-derived thiols and methylmercury.
    Gregus Z; Stein AF; Klaassen CD
    J Pharmacol Exp Ther; 1987 Jul; 242(1):27-32. PubMed ID: 2886637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of gamma-glutamyltranspeptidase in renal uptake and toxicity of inorganic mercury in mice.
    Tanaka T; Naganuma A; Imura N
    Toxicology; 1990 Mar; 60(3):187-98. PubMed ID: 1969183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain difference in sensitivity of mice to renal toxicity of inorganic mercury.
    Tanaka-Kagawa T; Suzuki M; Naganuma A; Yamanaka N; Imura N
    J Pharmacol Exp Ther; 1998 Apr; 285(1):335-41. PubMed ID: 9536029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acivicin-induced alterations in renal and hepatic glutathione concentrations and in gamma-glutamyltransferase activities.
    Lantum HB; Iyer RA; Anders MW
    Biochem Pharmacol; 2004 Apr; 67(7):1421-6. PubMed ID: 15013858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of gamma-glutamyltranspeptidase decreases renal deposition of mercury after mercury vapor exposure.
    Kim CY; Watanabe C; Kasanuma Y; Satoh H
    Arch Toxicol; 1995; 69(10):722-4. PubMed ID: 8572932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. gamma-Glutamyltransferase-dependent biliary-hepatic recycling of methyl mercury in the guinea pig.
    Dutczak WJ; Ballatori N
    J Pharmacol Exp Ther; 1992 Aug; 262(2):619-23. PubMed ID: 1354255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of exogenous thiols on inorganic mercury-induced injury in renal proximal and distal tubular cells from normal and uninephrectomized rats.
    Lash LH; Putt DA; Zalups RK
    J Pharmacol Exp Ther; 1999 Nov; 291(2):492-502. PubMed ID: 10525063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methyl mercury and selenium interaction in relation to mouse kidney gamma-glutamyltranspeptidase, ultrastructure, and function.
    Fair PH; Dougherty WJ; Braddon SA
    Toxicol Appl Pharmacol; 1985 Aug; 80(1):78-96. PubMed ID: 2862718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disposition of inorganic mercury following biliary obstruction and chemically induced glutathione depletion: dispositional changes one hour after the intravenous administration of mercuric chloride.
    Zalups RK; Barfuss DW; Lash LH
    Toxicol Appl Pharmacol; 1999 Jan; 154(2):135-44. PubMed ID: 9925797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of glutathione in reduction of arsenate and of gamma-glutamyltranspeptidase in disposition of arsenite in rats.
    Csanaky I; Gregus Z
    Toxicology; 2005 Feb; 207(1):91-104. PubMed ID: 15590125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nephrotoxicity of S-(2-chloroethyl)glutathione in the Fischer rat: evidence for gamma-glutamyltranspeptidase-independent uptake by the kidney.
    Kramer RA; Foureman G; Greene KE; Reed DJ
    J Pharmacol Exp Ther; 1987 Aug; 242(2):741-8. PubMed ID: 2886652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of extracellular thiols in accumulation and distribution of inorganic mercury in rat renal proximal and distal tubular cells.
    Lash LH; Putt DA; Zalups RK
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1039-50. PubMed ID: 9618406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nephrotoxicity of acetaminophen in male Wistar rats: role of hepatically derived metabolites.
    Trumper L; Monasterolo LA; ElĂ­as MM
    J Pharmacol Exp Ther; 1996 Nov; 279(2):548-54. PubMed ID: 8930156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury-metallothionein and the renal accumulation and handling of mercury.
    Zalups RK; Cherian MG; Barfuss DW
    Toxicology; 1993 Oct; 83(1-3):61-78. PubMed ID: 8248951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Routes for renal transport of methylmercury in mice.
    Tanaka T; Naganuma A; Imura N
    Eur J Pharmacol; 1992 May; 228(1):9-14. PubMed ID: 1397070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of extracellular glutathione and gamma-glutamyltranspeptidase in the disposition and kidney toxicity of inorganic mercury in rats.
    de Ceaurriz J; Payan JP; Morel G; Brondeau MT
    J Appl Toxicol; 1994; 14(3):201-6. PubMed ID: 7916024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disposition of the bromosulfophthalein-glutathione conjugate in the isolated perfused rat kidney.
    Snel CA; Moons MM; Russel FG; Mulder GJ
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1300-6. PubMed ID: 7791101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.