These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8094965)

  • 1. Mobilization and distribution of beryllium over the course of chelation therapy with some polyaminocarboxylic acids in the rat.
    Mathur S; Flora SJ; Mathur R; Das Gupta S
    Hum Exp Toxicol; 1993 Jan; 12(1):19-24. PubMed ID: 8094965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative effectiveness of Tiron (4,5-dihydroxy benzene 1,3-disulphonic acid disodium salt) and CaNa2EDTA with time after beryllium poisoning.
    Sharma P; Shukla S
    Indian J Exp Biol; 2000 Aug; 38(8):785-90. PubMed ID: 12557911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beryllium-induced toxicity and its prevention by treatment with chelating agents.
    Sharma P; Johri S; Shukla S
    J Appl Toxicol; 2000; 20(4):313-8. PubMed ID: 10942906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative effectiveness of CaNa3DTPA and tiron along with alpha-tocopherol against beryllium-induced biochemical alterations in rats.
    Mathur R; Nirala SK; Mathur A
    Indian J Exp Biol; 2004 Jun; 42(6):570-4. PubMed ID: 15260107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chelation in metal intoxication. XIII. Polyaminocarboxylic acids as chelators in lead poisoning.
    Tandon SK; Behari JR; Singh S
    Bull Environ Contam Toxicol; 1983 May; 30(5):552-8. PubMed ID: 6407551
    [No Abstract]   [Full Text] [Related]  

  • 6. Reversal of effects of intra peritoneally administered beryllium nitrate by tiron and CaNa3DTPA alone or in combination with alpha-tocopherol.
    Nirala SK; Bhadauria M; Upadhyay AK; Mathur R; Mathur A
    Indian J Exp Biol; 2009 Dec; 47(12):955-63. PubMed ID: 20329698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of selenium supplementation during chelation of lead in rats.
    Tandon SK; Dhawan M; Kumar A; Flora SJ
    Indian J Physiol Pharmacol; 1992 Jul; 36(3):201-4. PubMed ID: 1473853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonists for acute oral cadmium chloride intoxication.
    Basinger MA; Jones MM; Holscher MA; Vaughn WK
    J Toxicol Environ Health; 1988; 23(1):77-89. PubMed ID: 2826797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the antidotal efficacy of polyamincarboxylic acids (CDTA and DTPA) with time after acute zinc poisoning.
    Llobet JM; Colomina MT; Domingo JL; Corbella J
    Vet Hum Toxicol; 1989 Feb; 31(1):25-8. PubMed ID: 2496518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of LD50 of some polyaminocarboxylic acids used as chelating drugs in metal intoxication.
    Srivastava RC; Dwivedi PP; Behari JR; Athar M
    Toxicol Lett; 1986; 32(1-2):37-40. PubMed ID: 3090738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of phosphoorganic complexons on the activity of alkaline phosphatase in beryllium poisoning].
    Arkhipova OG; Demokidova NK
    Farmakol Toksikol; 1967; 30(3):352-6. PubMed ID: 4970461
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of chelating agents on the toxicity and distribution of beryllium in rats.
    Shukla S; Sharma P; Johri S; Mathur R
    J Appl Toxicol; 1998; 18(5):331-5. PubMed ID: 9804433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of metal chelators on metalloenzymes.
    Khandelwal S; Kachru DN; Tandon SK
    Toxicol Lett; 1987 Aug; 37(3):213-9. PubMed ID: 3617094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Accelerated excretion of beryllium with phosphicin].
    Arkhipova OG; Medved' TIa; Rudomino MV; Kabachnik MI
    Gig Tr Prof Zabol; 1967 Mar; 11(3):19-23. PubMed ID: 5615694
    [No Abstract]   [Full Text] [Related]  

  • 15. Combined effect of HEDTA and selenium against aluminum induced oxidative stress in rat brain.
    Shrivastava S
    J Trace Elem Med Biol; 2012 Jun; 26(2-3):210-4. PubMed ID: 22575537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chelation in metal intoxication. XIV. Comparative effect of thiol and amino chelators on lead-poisoned rats with normal or damaged kidneys.
    Tandon SK; Flora SJ; Singh S
    Toxicol Appl Pharmacol; 1985 Jun; 79(2):204-10. PubMed ID: 4002224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chelation in metal intoxication. VIII. Removal of chromium from organs of potassium chromate administered rats.
    Behari JR; Tandon SK
    Clin Toxicol; 1980 Mar; 16(1):33-40. PubMed ID: 6771085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oral cadmium chloride intoxication in mice: effects of chelation.
    Andersen O; Nielsen JB; Svendsen P
    Toxicology; 1988 Nov; 52(1-2):65-79. PubMed ID: 3142104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Final report on the safety assessment of EDTA, calcium disodium EDTA, diammonium EDTA, dipotassium EDTA, disodium EDTA, TEA-EDTA, tetrasodium EDTA, tripotassium EDTA, trisodium EDTA, HEDTA, and trisodium HEDTA.
    Lanigan RS; Yamarik TA
    Int J Toxicol; 2002; 21 Suppl 2():95-142. PubMed ID: 12396676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The removal of zinc from the mouse by polyamincarboxylic acids (CDTA and DTPA) following semichronic zinc ingestion.
    Domingo JL; Llobet JM; Colomina MT; Corbella J
    Vet Hum Toxicol; 1988 Dec; 30(6):524-7. PubMed ID: 3149813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.