BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 8095000)

  • 21. Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development.
    Rivera-Pérez JA; Mallo M; Gendron-Maguire M; Gridley T; Behringer RR
    Development; 1995 Sep; 121(9):3005-12. PubMed ID: 7555726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of activin and lithium on isolated Xenopus animal blastomeres and response alteration at the midblastula transition.
    Kinoshita K; Asashima M
    Development; 1995 Jun; 121(6):1581-9. PubMed ID: 7600976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drosophila goosecoid participates in neural development but not in body axis formation.
    Hahn M; Jäckle H
    EMBO J; 1996 Jun; 15(12):3077-84. PubMed ID: 8670808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Xenopus msx-1 regulates dorso-ventral axis formation by suppressing the expression of organizer genes.
    Takeda M; Saito Y; Sekine R; Onitsuka I; Maeda R; Maéno M
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Jun; 126(2):157-68. PubMed ID: 10874163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish.
    Toyama R; O'Connell ML; Wright CV; Kuehn MR; Dawid IB
    Development; 1995 Feb; 121(2):383-91. PubMed ID: 7768180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organizer-specific homeobox genes in Xenopus laevis embryos.
    Blumberg B; Wright CV; De Robertis EM; Cho KW
    Science; 1991 Jul; 253(5016):194-6. PubMed ID: 1677215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of the organizer specific homeobox gene goosecoid (gsc) in porcine embryos.
    Meijer HA; Van De Pavert SA; Stroband HW; Boerjan ML
    Mol Reprod Dev; 2000 Jan; 55(1):1-7. PubMed ID: 10602267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos.
    Schulte-Merker S; Hammerschmidt M; Beuchle D; Cho KW; De Robertis EM; Nüsslein-Volhard C
    Development; 1994 Apr; 120(4):843-52. PubMed ID: 7600961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes.
    Sasai Y; Lu B; Steinbeisser H; Geissert D; Gont LK; De Robertis EM
    Cell; 1994 Dec; 79(5):779-90. PubMed ID: 8001117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis.
    Lemaire P; Garrett N; Gurdon JB
    Cell; 1995 Apr; 81(1):85-94. PubMed ID: 7720076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle.
    Blitz IL; Cho KW
    Development; 1995 Apr; 121(4):993-1004. PubMed ID: 7743941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus.
    Gont LK; Fainsod A; Kim SH; De Robertis EM
    Dev Biol; 1996 Feb; 174(1):174-8. PubMed ID: 8626017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro.
    Furue M; Myoishi Y; Fukui Y; Ariizumi T; Okamoto T; Asashima M
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15474-9. PubMed ID: 12424341
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Umair Z; Kumar V; Goutam RS; Kumar S; Lee U; Kim J
    Mol Cells; 2021 Oct; 44(10):723-735. PubMed ID: 34711690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas.
    Thisse C; Thisse B; Halpern ME; Postlethwait JH
    Dev Biol; 1994 Aug; 164(2):420-9. PubMed ID: 8045345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development.
    Re'em-Kalma Y; Lamb T; Frank D
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12141-5. PubMed ID: 8618860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse.
    Watabe T; Kim S; Candia A; Rothbächer U; Hashimoto C; Inoue K; Cho KW
    Genes Dev; 1995 Dec; 9(24):3038-50. PubMed ID: 8543150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimorphic goosecoids.
    Ferreiro B; Artinger M; Cho K; Niehrs C
    Development; 1998 Apr; 125(8):1347-59. PubMed ID: 9502717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Spemann-Mangold organizer: the control of fate specification and morphogenetic rearrangements during gastrulation in Xenopus.
    Bouwmeester T
    Int J Dev Biol; 2001; 45(1):251-8. PubMed ID: 11291854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xenopus maternal RNAs from a dorsal animal blastomere induce a secondary axis in host embryos.
    Hainski AM; Moody SA
    Development; 1992 Oct; 116(2):347-55. PubMed ID: 1286612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.