BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 8095046)

  • 1. Production of hyperpolarized
    Moreno KX; Moore CL; Burgess SC; Sherry AD; Malloy CR; Merritt ME
    Metabolomics; 2015 Oct; 11(5):1144-1156. PubMed ID: 26543443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive isotopomer analysis of glutamate and aspartate in small tissue samples.
    Cai F; Bezwada D; Cai L; Mahar R; Wu Z; Chang MC; Pachnis P; Yang C; Kelekar S; Gu W; Brooks B; Ko B; Vu HS; Mathews TP; Zacharias LG; Martin-Sandoval M; Do D; Oaxaca KC; Jin ES; Margulis V; Malloy CR; Merritt ME; DeBerardinis RJ
    Cell Metab; 2023 Oct; 35(10):1830-1843.e5. PubMed ID: 37611583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Follicular Fluid: A Powerful Tool for the Understanding and Diagnosis of Polycystic Ovary Syndrome.
    Brinca AT; Ramalhinho AC; Sousa Â; Oliani AH; Breitenfeld L; Passarinha LA; Gallardo E
    Biomedicines; 2022 May; 10(6):. PubMed ID: 35740276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INCA 2.0: A tool for integrated, dynamic modeling of NMR- and MS-based isotopomer measurements and rigorous metabolic flux analysis.
    Rahim M; Ragavan M; Deja S; Merritt ME; Burgess SC; Young JD
    Metab Eng; 2022 Jan; 69():275-285. PubMed ID: 34965470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice.
    Hasenour CM; Kennedy AJ; Bednarski T; Trenary IA; Eudy BJ; da Silva RP; Boyd KL; Young JD
    J Lipid Res; 2020 May; 61(5):707-721. PubMed ID: 32086244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. tcaSIM: A Simulation Program for Optimal Design of
    Alger JR; Sherry AD; Malloy CR
    Curr Metabolomics; 2018; 6(3):176-187. PubMed ID: 31745452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image modalities to assess cardiac tumors: Echocardiography, multidetector CT, and MR imaging.
    Hirata K
    J Cardiol Cases; 2013 Aug; 8(2):e91-e92. PubMed ID: 30546752
    [No Abstract]   [Full Text] [Related]  

  • 8. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver.
    Satapati S; Kucejova B; Duarte JA; Fletcher JA; Reynolds L; Sunny NE; He T; Nair LA; Livingston KA; Fu X; Merritt ME; Sherry AD; Malloy CR; Shelton JM; Lambert J; Parks EJ; Corbin I; Magnuson MA; Browning JD; Burgess SC
    J Clin Invest; 2015 Dec; 125(12):4447-62. PubMed ID: 26571396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo.
    Hasenour CM; Wall ML; Ridley DE; Hughey CC; James FD; Wasserman DH; Young JD
    Am J Physiol Endocrinol Metab; 2015 Jul; 309(2):E191-203. PubMed ID: 25991647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards high resolution analysis of metabolic flux in cells and tissues.
    Sims JK; Manteiga S; Lee K
    Curr Opin Biotechnol; 2013 Oct; 24(5):933-9. PubMed ID: 23906926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational approaches for understanding energy metabolism.
    Shestov AA; Barker B; Gu Z; Locasale JW
    Wiley Interdiscip Rev Syst Biol Med; 2013; 5(6):733-50. PubMed ID: 23897661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies.
    Crown SB; Antoniewicz MR
    Metab Eng; 2013 Mar; 16():21-32. PubMed ID: 23246523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluxome analysis using GC-MS.
    Wittmann C
    Microb Cell Fact; 2007 Feb; 6():6. PubMed ID: 17286851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dicarboxylic acid fluxes during gluconeogenesis. No channelling of mitochondrial oxalacetate.
    Rognstad R
    Bull Math Biol; 1995 Jul; 57(4):557-68. PubMed ID: 7742740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting healthy subjects and IDDM patients.
    Landau BR; Chandramouli V; Schumann WC; Ekberg K; Kumaran K; Kalhan SC; Wahren J
    Diabetologia; 1995 Jul; 38(7):831-8. PubMed ID: 7556986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rates of gluconeogenesis and citric acid cycle in perfused livers, assessed from the mass spectrometric assay of the 13C labeling pattern of glutamate.
    Di Donato L; Des Rosiers C; Montgomery JA; David F; Garneau M; Brunengraber H
    J Biol Chem; 1993 Feb; 268(6):4170-80. PubMed ID: 8095046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate.
    Katz J; Wals P; Lee WN
    J Biol Chem; 1993 Dec; 268(34):25509-21. PubMed ID: 7902352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver. Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis.
    Des Rosiers C; Di Donato L; Comte B; Laplante A; Marcoux C; David F; Fernandez CA; Brunengraber H
    J Biol Chem; 1995 Apr; 270(17):10027-36. PubMed ID: 7730304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracing hepatic gluconeogenesis relative to citric acid cycle activity in vitro and in vivo. Comparisons in the use of [3-13C]lactate, [2-13C]acetate, and alpha-keto[3-13C]isocaproate.
    Beylot M; Soloviev MV; David F; Landau BR; Brunengraber H
    J Biol Chem; 1995 Jan; 270(4):1509-14. PubMed ID: 7829478
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.