BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8095171)

  • 1. Glutamate and acetylcholine release from cholinergic nerve terminals, a calcium control of the specificity of the release mechanism.
    Israël M; Lesbats B; Bruner J
    Neurochem Int; 1993 Jan; 22(1):53-8. PubMed ID: 8095171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunolabelling of the presynaptic membrane of Torpedo electric organ nerve terminals with an antiserum towards the acetylcholine releasing protein mediatophore.
    Brochier G; Israël M; Lesbats B
    Biol Cell; 1993; 78(3):145-54. PubMed ID: 8241957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-induced desensitization of acetylcholine release from synaptosomes or proteoliposomes equipped with mediatophore, a presynaptic membrane protein.
    Israël M; Meunier FM; Morel N; Lesbats B
    J Neurochem; 1987 Sep; 49(3):975-82. PubMed ID: 2440993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-release of acetylcholine, glutamate and taurine from synaptosomes of Torpedo electric organ.
    Vyas S; Bradford HF
    Neurosci Lett; 1987 Nov; 82(1):58-64. PubMed ID: 2447530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubilization and partial purification of a presynaptic membrane protein ensuring calcium-dependent acetylcholine release from proteoliposomes.
    Birman S; Israël M; Lesbats B; Morel N
    J Neurochem; 1986 Aug; 47(2):433-44. PubMed ID: 3090201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mediatophore: a nerve terminal membrane protein supporting the final step of the acetylcholine release process.
    Israël M; Morel N
    Prog Brain Res; 1990; 84():101-10. PubMed ID: 2267287
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of N,N'-dicyclohexylcarbodiimide on acetylcholine release from Torpedo synaptosomes and proteoliposomes reconstituted with the proteolipid mediatophore.
    Sbia M; Diebler MF; Morel N; Israël M
    J Neurochem; 1992 Oct; 59(4):1273-9. PubMed ID: 1402880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro expression of the 15 kDa subunit of the mediatophore and functional reconstitution of acetylcholine release.
    Leroy C; Meunier FM; Lesbats B; Israël M
    Gen Pharmacol; 1994 Mar; 25(2):245-55. PubMed ID: 8026722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotransmitter release from viable purely cholinergic Torpedo synaptosomes.
    Michaelson DM; Sokolovsky M
    Biochem Biophys Res Commun; 1976 Nov; 73(1):25-31. PubMed ID: 793592
    [No Abstract]   [Full Text] [Related]  

  • 10. Ca(2+)-dependent changes of acetylcholine release and IP3 mass in Torpedo cholinergic synaptosomes.
    Carrasco MA; Gaudry-Talarmain YM; Molgo J
    Neurochem Int; 1996 Dec; 29(6):637-43. PubMed ID: 9113131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cetiedil, a drug that inhibits acetylcholine release in Torpedo electric organ.
    Gaudry-Talarmain YM; Israël M; Lesbats B; Morel N
    J Neurochem; 1987 Aug; 49(2):548-54. PubMed ID: 3598585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agelenopsis aperta venom and FTX, a purified toxin, inhibit acetylcholine release in Torpedo synaptosomes.
    Moulian N; Gaudry-Talarmain YM
    Neuroscience; 1993 Jun; 54(4):1035-41. PubMed ID: 8393536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-independent release of acetylcholine from electric organ synaptosomes and its changes by depolarization and cholinergic drugs.
    Dolezal V; Diebler MF; Lazereg S; Israël M; Tucek S
    J Neurochem; 1988 Feb; 50(2):406-13. PubMed ID: 2447238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-induced acetylcholine release and intramembrane particle occurrence in proteoliposomes equipped with mediatophore.
    Brochier G; Gulik-Krzywicki T; Lesbats B; Dedieu JC; Israël M
    Biol Cell; 1992; 74(2):225-30. PubMed ID: 1596642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx.
    Michaelson DM; McDowall G; Sarne Y
    J Neurochem; 1984 Sep; 43(3):614-8. PubMed ID: 6431053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation and desensitisation of acetylcholine release by zinc at Torpedo nerve terminals.
    Dunant Y; Loctin F; Vallée JP; Parducz A; Lesbats B; Israël M
    Pflugers Arch; 1996 Sep; 432(5):853-8. PubMed ID: 8772136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-dependent protein phosphorylation of purely cholinergic Torpedo synaptosomes.
    Michaelson DM; Avissar S
    J Biol Chem; 1979 Dec; 254(24):12542-6. PubMed ID: 387788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lambert-Eaton syndrome antibodies inhibit acetylcholine release and P/Q-type Ca2+ channels in electric ray nerve endings.
    Satoh Y; Hirashima N; Tokumaru H; Takahashi MP; Kang J; Viglione MP; Kim YI; Kirino Y
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):427-38. PubMed ID: 9508807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compared effects of two vesicular acetylcholine uptake blockers, AH5183 and cetiedil, on cholinergic functions in Torpedo synaptosomes: acetylcholine synthesis, choline transport, vesicular uptake, and evoked acetylcholine release.
    Gaudry-Talarmain YM; Diebler MF; O'Regan S
    J Neurochem; 1989 Mar; 52(3):822-9. PubMed ID: 2493069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes at pure cholinergic synaptosomes during the transmitter release induced by A-23187 in Torpedo marmorata. A freeze-fracture study.
    Egea G; Esquerda JE; Calvet R; Solsona C; Marsal J
    Cell Tissue Res; 1987 Apr; 248(1):207-14. PubMed ID: 3105889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.