BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8095358)

  • 1. Hydroxyl radical-dependent inactivation of guanylate cyclase in cerebral arterioles by methylene blue and by LY83583.
    Kontos HA; Wei EP
    Stroke; 1993 Mar; 24(3):427-34. PubMed ID: 8095358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent blockade of cerebral vasodilation from acetylcholine and nitric oxide.
    Marshall JJ; Wei EP; Kontos HA
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H847-54. PubMed ID: 2845816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles.
    Wei EP; Moskowitz MA; Boccalini P; Kontos HA
    Circ Res; 1992 Jun; 70(6):1313-9. PubMed ID: 1576743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of potentiation of LY83583-induced growth inhibition by sodium nitroprusside in human brain tumor cells.
    Lee YS; Wurster RD
    Cancer Chemother Pharmacol; 1995; 36(4):341-4. PubMed ID: 7628054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles.
    Sobey CG; Faraci FM
    Stroke; 1997 Apr; 28(4):837-42; discussion 842-3. PubMed ID: 9099205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion.
    Wolin MS; Cherry PD; Rodenburg JM; Messina EJ; Kaley G
    J Pharmacol Exp Ther; 1990 Sep; 254(3):872-6. PubMed ID: 2168487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H2O2 and endothelium-dependent cerebral arteriolar dilation. Implications for the identity of endothelium-derived relaxing factor generated by acetylcholine.
    Wei EP; Kontos HA
    Hypertension; 1990 Aug; 16(2):162-9. PubMed ID: 2379949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of nitric oxide-dependent relaxation of pig tracheal smooth muscle by inhibitors of guanylyl cyclase and calcium activated potassium channels.
    Kannan MS; Johnson DE
    Life Sci; 1995; 56(25):2229-38. PubMed ID: 7540707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of vascular smooth muscle relaxation by LY83583.
    Malta E; Macdonald PS; Dusting GJ
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Apr; 337(4):459-64. PubMed ID: 2900475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cGMP in the relaxation to nitric oxide donors in airway smooth muscle.
    Stuart-Smith K; Warner DO; Jones KA
    Eur J Pharmacol; 1998 Jan; 341(2-3):225-33. PubMed ID: 9543243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halothane attenuates nitric oxide relaxation of rat aortas by competition for the nitric oxide receptor site on soluble guanylyl cyclase.
    Jing M; Ling GS; Bina S; Hart JL; Muldoon SM
    Eur J Pharmacol; 1998 Jan; 342(2-3):217-24. PubMed ID: 9548389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for cGMP mediation of skeletal muscle arteriolar dilation to lactate.
    Chen YL; Wolin MS; Messina EJ
    J Appl Physiol (1985); 1996 Jul; 81(1):349-54. PubMed ID: 8828684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-dependent responses after experimental brain injury.
    Kontos HA; Wei EP
    J Neurotrauma; 1992; 9(4):349-54. PubMed ID: 1291694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of vasodilation of cerebral vessels induced by the potassium channel opener nicorandil in canine in vivo experiments.
    Ishiyama T; Dohi S; Iida H; Akamatsu S; Ohta S; Shimonaka H
    Stroke; 1994 Aug; 25(8):1644-50. PubMed ID: 8042218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel actions of methylene blue.
    Mayer B; Brunner F; Schmidt K
    Eur Heart J; 1993 Nov; 14 Suppl I():22-6. PubMed ID: 7507438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells.
    Martin W; White DG; Henderson AH
    Br J Pharmacol; 1988 Jan; 93(1):229-39. PubMed ID: 2894877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-associated vasodilators in rat skeletal muscle microcirculation.
    Kaley G; Rodenburg JM; Messina EJ; Wolin MS
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H720-5. PubMed ID: 2493747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the effects of nitric oxide synthase inhibition and guanylate cyclase inhibition on vascular contraction in vitro and in vivo in the rat.
    Abdullah K; Cawley T; Connolly C; Ruiz E; Docherty JR
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Oct; 356(4):481-7. PubMed ID: 9349635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects in cats of inhibition of nitric oxide synthesis on cerebral vasodilation and endothelium-derived relaxing factor from acetylcholine.
    Wei EP; Kukreja R; Kontos HA
    Stroke; 1992 Nov; 23(11):1623-8; discussion 1628-9. PubMed ID: 1440711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite.
    Wei EP; Kontos HA; Beckman JS
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H1262-6. PubMed ID: 8853367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.