These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8095358)

  • 1. Hydroxyl radical-dependent inactivation of guanylate cyclase in cerebral arterioles by methylene blue and by LY83583.
    Kontos HA; Wei EP
    Stroke; 1993 Mar; 24(3):427-34. PubMed ID: 8095358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent blockade of cerebral vasodilation from acetylcholine and nitric oxide.
    Marshall JJ; Wei EP; Kontos HA
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H847-54. PubMed ID: 2845816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles.
    Wei EP; Moskowitz MA; Boccalini P; Kontos HA
    Circ Res; 1992 Jun; 70(6):1313-9. PubMed ID: 1576743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of potentiation of LY83583-induced growth inhibition by sodium nitroprusside in human brain tumor cells.
    Lee YS; Wurster RD
    Cancer Chemother Pharmacol; 1995; 36(4):341-4. PubMed ID: 7628054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles.
    Sobey CG; Faraci FM
    Stroke; 1997 Apr; 28(4):837-42; discussion 842-3. PubMed ID: 9099205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion.
    Wolin MS; Cherry PD; Rodenburg JM; Messina EJ; Kaley G
    J Pharmacol Exp Ther; 1990 Sep; 254(3):872-6. PubMed ID: 2168487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H2O2 and endothelium-dependent cerebral arteriolar dilation. Implications for the identity of endothelium-derived relaxing factor generated by acetylcholine.
    Wei EP; Kontos HA
    Hypertension; 1990 Aug; 16(2):162-9. PubMed ID: 2379949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of nitric oxide-dependent relaxation of pig tracheal smooth muscle by inhibitors of guanylyl cyclase and calcium activated potassium channels.
    Kannan MS; Johnson DE
    Life Sci; 1995; 56(25):2229-38. PubMed ID: 7540707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of vascular smooth muscle relaxation by LY83583.
    Malta E; Macdonald PS; Dusting GJ
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Apr; 337(4):459-64. PubMed ID: 2900475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cGMP in the relaxation to nitric oxide donors in airway smooth muscle.
    Stuart-Smith K; Warner DO; Jones KA
    Eur J Pharmacol; 1998 Jan; 341(2-3):225-33. PubMed ID: 9543243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halothane attenuates nitric oxide relaxation of rat aortas by competition for the nitric oxide receptor site on soluble guanylyl cyclase.
    Jing M; Ling GS; Bina S; Hart JL; Muldoon SM
    Eur J Pharmacol; 1998 Jan; 342(2-3):217-24. PubMed ID: 9548389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for cGMP mediation of skeletal muscle arteriolar dilation to lactate.
    Chen YL; Wolin MS; Messina EJ
    J Appl Physiol (1985); 1996 Jul; 81(1):349-54. PubMed ID: 8828684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-dependent responses after experimental brain injury.
    Kontos HA; Wei EP
    J Neurotrauma; 1992; 9(4):349-54. PubMed ID: 1291694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of vasodilation of cerebral vessels induced by the potassium channel opener nicorandil in canine in vivo experiments.
    Ishiyama T; Dohi S; Iida H; Akamatsu S; Ohta S; Shimonaka H
    Stroke; 1994 Aug; 25(8):1644-50. PubMed ID: 8042218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel actions of methylene blue.
    Mayer B; Brunner F; Schmidt K
    Eur Heart J; 1993 Nov; 14 Suppl I():22-6. PubMed ID: 7507438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells.
    Martin W; White DG; Henderson AH
    Br J Pharmacol; 1988 Jan; 93(1):229-39. PubMed ID: 2894877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-associated vasodilators in rat skeletal muscle microcirculation.
    Kaley G; Rodenburg JM; Messina EJ; Wolin MS
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H720-5. PubMed ID: 2493747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the effects of nitric oxide synthase inhibition and guanylate cyclase inhibition on vascular contraction in vitro and in vivo in the rat.
    Abdullah K; Cawley T; Connolly C; Ruiz E; Docherty JR
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Oct; 356(4):481-7. PubMed ID: 9349635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects in cats of inhibition of nitric oxide synthesis on cerebral vasodilation and endothelium-derived relaxing factor from acetylcholine.
    Wei EP; Kukreja R; Kontos HA
    Stroke; 1992 Nov; 23(11):1623-8; discussion 1628-9. PubMed ID: 1440711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite.
    Wei EP; Kontos HA; Beckman JS
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H1262-6. PubMed ID: 8853367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.