These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8095358)

  • 21. Effects of methylene blue and LY83583 on neuronal nitric oxide synthase and NADPH-diaphorase.
    Luo D; Das S; Vincent SR
    Eur J Pharmacol; 1995 Aug; 290(3):247-51. PubMed ID: 7589219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of cyclic GMP on rabbit corporal smooth muscle tone and its modulation by cyclo-oxygenase products.
    Minhas S; Eardley I; Joyce AD; Morrison JB
    Prostaglandins Leukot Essent Fatty Acids; 2000 Mar; 62(3):153-60. PubMed ID: 10841037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydroxyl radical mediates the endothelium-dependent relaxation produced by bradykinin in mouse cerebral arterioles.
    Rosenblum WI
    Circ Res; 1987 Oct; 61(4):601-3. PubMed ID: 2820610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic GMP and guanylate cyclase mediate lipopolysaccharide-induced Kupffer cell tumor necrosis factor-alpha synthesis.
    Harbrecht BG; Wang SC; Simmons RL; Billiar TR
    J Leukoc Biol; 1995 Feb; 57(2):297-302. PubMed ID: 7852845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of the effects of three guanylyl cyclase inhibitors on the L-type Ca2+ and muscarinic K+ currents in frog cardiac myocytes.
    Abi-Gerges N; Hove-Madsen L; Fischmeister R; Méry PF
    Br J Pharmacol; 1997 Aug; 121(7):1369-77. PubMed ID: 9257916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antioxidants inhibit ATP-sensitive potassium channels in cerebral arterioles.
    Wei EP; Kontos HA; Beckman JS
    Stroke; 1998 Apr; 29(4):817-22; discussion 823. PubMed ID: 9550517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of two soluble guanylyl cyclase inhibitors, methylene blue and ODQ, on sodium nitroprusside-induced relaxation in guinea-pig trachea.
    Hwang TL; Wu CC; Teng CM
    Br J Pharmacol; 1998 Nov; 125(6):1158-63. PubMed ID: 9863642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superoxide generation and reversal of acetylcholine-induced cerebral arteriolar dilation after acute hypertension.
    Wei EP; Kontos HA; Christman CW; DeWitt DS; Povlishock JT
    Circ Res; 1985 Nov; 57(5):781-7. PubMed ID: 4053309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide (NO)-dependent but not NO-independent guanylate cyclase activation attenuates hypoxic vasoconstriction in rabbit lungs.
    Weissmann N; Voswinckel R; Tadic A; Hardebusch T; Ghofrani HA; Schermuly RT; Seeger W; Grimminger F
    Am J Respir Cell Mol Biol; 2000 Aug; 23(2):222-7. PubMed ID: 10919989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superoxide anion radical does not mediate vasodilation of cerebral arterioles by vasoactive intestinal polypeptide.
    Ballon BJ; Wei EP; Kontos HA
    Stroke; 1986; 17(6):1287-90. PubMed ID: 3027925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of ductus arteriosus patency by nitric oxide in fetal lambs: the role of gestation, oxygen tension, and vasa vasorum.
    Clyman RI; Waleh N; Black SM; Riemer RK; Mauray F; Chen YQ
    Pediatr Res; 1998 May; 43(5):633-44. PubMed ID: 9585010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite.
    Gruetter CA; Kadowitz PJ; Ignarro LJ
    Can J Physiol Pharmacol; 1981 Feb; 59(2):150-6. PubMed ID: 6112057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superoxide generation links protein kinase C activation to impaired ATP-sensitive K+ channel function after brain injury.
    Armstead WM
    Stroke; 1999 Jan; 30(1):153-9. PubMed ID: 9880404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interleukin 1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells.
    Beasley D; Schwartz JH; Brenner BM
    J Clin Invest; 1991 Feb; 87(2):602-8. PubMed ID: 1671393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. George E. Brown memorial lecture. Oxygen radicals in cerebral vascular injury.
    Kontos HA
    Circ Res; 1985 Oct; 57(4):508-16. PubMed ID: 2994903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of soluble guanylate cyclase in dilator responses of the cerebral microcirculation.
    Faraci FM; Sobey CG
    Brain Res; 1999 Mar; 821(2):368-73. PubMed ID: 10064823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation by methylene blue of large Ca(2+)-activated K+ channels.
    Stockand JD; Sansom SC
    Biochim Biophys Acta; 1996 Dec; 1285(2):123-6. PubMed ID: 8972695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate.
    Han X; Shimoni Y; Giles WR
    J Gen Physiol; 1995 Jul; 106(1):45-65. PubMed ID: 7494138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arginine analogues inhibit responses mediated by ATP-sensitive K+ channels.
    Kontos HA; Wei EP
    Am J Physiol; 1996 Oct; 271(4 Pt 2):H1498-506. PubMed ID: 8897945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of guanylate cyclase inhibitors on non-adrenergic and non-cholinergic neurogenic relaxations of the South American opossum lower esophageal sphincter.
    Matsuda NM; Lemos MC; Feitosa RL
    Fundam Clin Pharmacol; 2008 Jun; 22(3):299-304. PubMed ID: 18485148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.