BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8095531)

  • 21. Formation and cleansing performance of bicontinuous microemulsions in water/poly (oxyethylene) alkyl ether/ester-type oil systems.
    Aramaki K; Tawa K; Shrestha LK; Iwanaga T; Kamada M
    J Oleo Sci; 2013; 62(10):803-8. PubMed ID: 24088518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs.
    Ke WT; Lin SY; Ho HO; Sheu MT
    J Control Release; 2005 Feb; 102(2):489-507. PubMed ID: 15653166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cremophor-free intravenous microemulsions for paclitaxel I: formulation, cytotoxicity and hemolysis.
    Nornoo AO; Osborne DW; Chow DS
    Int J Pharm; 2008 Feb; 349(1-2):108-16. PubMed ID: 17869459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The advantage of polymer addition to a non-ionic oil in water microemulsion for the dermal delivery of progesterone.
    Biruss B; Valenta C
    Int J Pharm; 2008 Feb; 349(1-2):269-73. PubMed ID: 17869457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solubilisation capacity of Brij surfactants.
    Ribeiro ME; de Moura CL; Vieira MG; Gramosa NV; Chaibundit C; de Mattos MC; Attwood D; Yeates SG; Nixon SK; Ricardo NM
    Int J Pharm; 2012 Oct; 436(1-2):631-5. PubMed ID: 22842626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Influence factors of the separation of steroids using oil-in-water microemulsion liquid chromatography].
    Li N; Hou X; Yang W; Huang G; Ye X
    Se Pu; 2009 May; 27(3):323-7. PubMed ID: 19803138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporation of antitubercular drug isoniazid in pharmaceutically accepted microemulsion: effect on microstructure and physical parameters.
    Mehta SK; Kaur G; Bhasin KK
    Pharm Res; 2008 Jan; 25(1):227-36. PubMed ID: 17577642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and Characterization of a Biocompatible Soybean Oil-Based Microemulsion for the Delivery of Poorly Water-Soluble Drugs.
    Aloisio C; Longhi MR; De Oliveira AG
    J Pharm Sci; 2015 Oct; 104(10):3535-43. PubMed ID: 26149419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microemulsion formulations for the transdermal delivery of testosterone.
    Hathout RM; Woodman TJ; Mansour S; Mortada ND; Geneidi AS; Guy RH
    Eur J Pharm Sci; 2010 Jun; 40(3):188-96. PubMed ID: 20304048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.
    Chen Y; Tuo J; Huang H; Liu D; You X; Mai J; Song J; Xie Y; Wu C; Hu H
    Int J Pharm; 2015 Jun; 487(1-2):17-24. PubMed ID: 25841571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol.
    Boonme P; Krauel K; Graf A; Rades T; Junyaprasert VB
    AAPS PharmSciTech; 2006 May; 7(2):E45. PubMed ID: 16796362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of an eucalyptus oil containing topical drug delivery system for selected steroid hormones.
    Biruss B; Kählig H; Valenta C
    Int J Pharm; 2007 Jan; 328(2):142-51. PubMed ID: 16950579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of prospective plant oil derived micro-emulsion vehicles for drug delivery.
    Gupta S; Sanyal SK; Datta S; Moulik SP
    Indian J Biochem Biophys; 2006 Aug; 43(4):254-7. PubMed ID: 17133772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and evaluation of fexofenadine microemulsions for intranasal delivery.
    Piao HM; Balakrishnan P; Cho HJ; Kim H; Kim YS; Chung SJ; Shim CK; Kim DD
    Int J Pharm; 2010 Aug; 395(1-2):309-16. PubMed ID: 20635476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization.
    Kaur G; Mehta SK; Kumar S; Bhanjana G; Dilbaghi N
    J Pharm Sci; 2015 Jul; 104(7):2203-12. PubMed ID: 25951802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and evaluation of microemulsion of vinpocetine for transdermal delivery.
    Hua L; Weisan P; Jiayu L; Hongfei L
    Pharmazie; 2004 Apr; 59(4):274-8. PubMed ID: 15125571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation.
    Chan J; Maghraby GM; Craig JP; Alany RG
    Int J Pharm; 2007 Jan; 328(1):65-71. PubMed ID: 17092668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of novel water-in-oil microemulsions in microemulsion electrokinetic chromatography.
    Altria KD; Broderick MF; Donegan S; Power J
    Electrophoresis; 2004 Feb; 25(4-5):645-52. PubMed ID: 14981692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a microemulsion-based formulation to improve the availability of poorly water-soluble drug.
    Abd-Allah FI; Dawaba HM; Ahmed AM
    Drug Discov Ther; 2010 Aug; 4(4):257-66. PubMed ID: 22491208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.