BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8096088)

  • 1. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases.
    Feng GS; Hui CC; Pawson T
    Science; 1993 Mar; 259(5101):1607-11. PubMed ID: 8096088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two axes in platelet-derived growth factor signaling: tyrosine phosphorylation and reactive oxygen species.
    Kang SW
    Cell Mol Life Sci; 2007 Mar; 64(5):533-41. PubMed ID: 17221164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor-binding, tyrosine phosphorylation and chromosome localization of the mouse SH2-containing phosphotyrosine phosphatase Syp.
    Feng GS; Shen R; Heng HH; Tsui LC; Kazlauskas A; Pawson T
    Oncogene; 1994 Jun; 9(6):1545-50. PubMed ID: 8183548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KRAS: Biology, Inhibition, and Mechanisms of Inhibitor Resistance.
    Ash LJ; Busia-Bourdain O; Okpattah D; Kamel A; Liberchuk A; Wolfe AL
    Curr Oncol; 2024 Apr; 31(4):2024-2046. PubMed ID: 38668053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine phosphatase SHP2 aggravates tumor progression and glycolysis by dephosphorylating PKM2 in gastric cancer.
    Wang P; Han Y; Pan W; Du J; Zuo D; Ba Y; Zhang H
    MedComm (2020); 2024 Apr; 5(4):e527. PubMed ID: 38576457
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Yang Y; Yan Z; Xie Q; Wang Y; Liu Z; Lei M
    Aging (Albany NY); 2024 Apr; 16(7):6334-6347. PubMed ID: 38575308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innate immune signal transduction pathways to fungal infection: Components and regulation.
    Chen T; Gao C
    Cell Insight; 2024 Jun; 3(3):100154. PubMed ID: 38464417
    [No Abstract]   [Full Text] [Related]  

  • 8. Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors.
    Yuan Z; Chen X; Fan S; Chang L; Chu L; Zhang Y; Wang J; Li S; Xie J; Hu J; Miao R; Zhu L; Zhao Z; Li H; Li S
    Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consideration of SHP-1 as a Molecular Target for Tumor Therapy.
    Lim S; Lee KW; Kim JY; Kim KD
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting SHP2 with an Active Site Inhibitor Blocks Signaling and Breast Cancer Cell Phenotypes.
    Lade DM; Agazie YM
    ACS Bio Med Chem Au; 2023 Oct; 3(5):418-428. PubMed ID: 37876496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Setting sail: Maneuvering SHP2 activity and its effects in cancer.
    Welsh CL; Allen S; Madan LK
    Adv Cancer Res; 2023; 160():17-60. PubMed ID: 37704288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of machine learning models for the prediction of SH-2 containing protein tyrosine phosphatase 2 inhibitors.
    Adhikari N; Ayyannan SR
    Mol Divers; 2023 Aug; ():. PubMed ID: 37552436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potent molecular-targeted therapies for advanced esophageal squamous cell carcinoma.
    Ooki A; Osumi H; Chin K; Watanabe M; Yamaguchi K
    Ther Adv Med Oncol; 2023; 15():17588359221138377. PubMed ID: 36872946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2.
    Solman M; Woutersen DTJ; den Hertog J
    Front Cell Dev Biol; 2022; 10():1046415. PubMed ID: 36407105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SHP2 regulates adipose maintenance and adipocyte-pancreatic cancer cell crosstalk via PDHA1.
    Olou AA; Ambrose J; Jack JL; Walsh M; Ruckert MT; Eades AE; Bye BA; Dandawate P; VanSaun MN
    J Cell Commun Signal; 2023 Sep; 17(3):575-590. PubMed ID: 36074246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting macrophagic SHP2 for ameliorating osteoarthritis
    Sun Z; Liu Q; Lv Z; Li J; Xu X; Sun H; Wang M; Sun K; Shi T; Liu Z; Tan G; Yan W; Wu R; Yang YX; Ikegawa S; Jiang Q; Sun Y; Shi D
    Acta Pharm Sin B; 2022 Jul; 12(7):3073-3084. PubMed ID: 35865095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pan-cancer analysis confirms PTPN11's potential as a prognostic and immunological biomarker.
    Cao Y; Duan H; Su A; Xu L; Lai B
    Aging (Albany NY); 2022 Jul; 14(13):5590-5610. PubMed ID: 35802774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent insights into the pathogeneses and therapeutic targets of liver diseases: Summary of the 4th Chinese American Liver Society/Society of Chinese Bioscientists in America Hepatology Division Symposium in 2021.
    Ding WX; Wang H; Zhang Y
    Liver Res; 2022 Mar; 6(1):50-57. PubMed ID: 35747395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy.
    Pan J; Zhou L; Zhang C; Xu Q; Sun Y
    Signal Transduct Target Ther; 2022 Jun; 7(1):177. PubMed ID: 35665742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular Interaction with the E6 Region Stabilizes the Closed Conformation of the N-SH2 Domain and Concurs with the Self-Inhibitory Docking in Downregulating the Activity of the SHP2 Tyrosine Phosphatase: A Molecular Dynamics Study.
    Bellacchio E
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.