These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 8096376)

  • 1. Learning to modulate transmitter release: themes and variations in synaptic plasticity.
    Hawkins RD; Kandel ER; Siegelbaum SA
    Annu Rev Neurosci; 1993; 16():625-65. PubMed ID: 8096376
    [No Abstract]   [Full Text] [Related]  

  • 2. [Model of transmitter release and analysis of synaptic plasticity].
    Voronin LL; Dereviagin VI
    Usp Fiziol Nauk; 1984; 15(2):86-110. PubMed ID: 6145265
    [No Abstract]   [Full Text] [Related]  

  • 3. The probability of transmitter release at a mammalian central synapse.
    Hessler NA; Shirke AM; Malinow R
    Nature; 1993 Dec; 366(6455):569-72. PubMed ID: 7902955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Synaptic plasticity and gene products].
    Sekino Y; Kuroda Y
    Nihon Rinsho; 1992 Nov; 50(11):2796-807. PubMed ID: 1363125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term potentiation is associated with increases in quantal content and quantal amplitude.
    Kullmann DM; Nicoll RA
    Nature; 1992 May; 357(6375):240-4. PubMed ID: 1317014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic organization of commissural projections of the hippocampal region in the guinea pig. I. Dorsal psalterium: mode of activation of granule cells and CAI pyramidal neurons.
    Sperti L; Gessi T; Volta F; Riva Sanseverino E
    Arch Sci Biol (Bologna); 1970; 54(4):141-82. PubMed ID: 5525353
    [No Abstract]   [Full Text] [Related]  

  • 7. Memory suppressor genes: enhancing the relationship between synaptic plasticity and memory storage.
    Cardin JA; Abel T
    J Neurosci Res; 1999 Oct; 58(1):10-23. PubMed ID: 10491568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some mechanisms controlling hippocampal pyramidal cells.
    Langmoen IA
    Prog Brain Res; 1983; 58():61-9. PubMed ID: 6138815
    [No Abstract]   [Full Text] [Related]  

  • 9. Intracortical organization of arousal as a model of dynamic neuronal processes that may involve a set for movements.
    Oshima T
    Adv Neurol; 1983; 39():287-300. PubMed ID: 6318532
    [No Abstract]   [Full Text] [Related]  

  • 10. New life in an old idea: the synaptic plasticity and memory hypothesis revisited.
    Martin SJ; Morris RG
    Hippocampus; 2002; 12(5):609-36. PubMed ID: 12440577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the readily releasable pool of transmitter and in efficacy of release induced by high-frequency firing at Aplysia sensorimotor synapses in culture.
    Zhao Y; Klein M
    J Neurophysiol; 2004 Apr; 91(4):1500-9. PubMed ID: 14645384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic organization of commissural projections of the hippocampal region in the guinea pig. II. Dorsal psalterium: pre-hippocampal and intrahippocampal relays.
    Sperti L; Gessi T; Volta F; Riva Sanseverino E
    Arch Sci Biol (Bologna); 1970; 54(4):183-210. PubMed ID: 4336089
    [No Abstract]   [Full Text] [Related]  

  • 13. Computational models of the neural bases of learning and memory.
    Gluck MA; Granger R
    Annu Rev Neurosci; 1993; 16():667-706. PubMed ID: 8460905
    [No Abstract]   [Full Text] [Related]  

  • 14. Experience-dependent changes in NMDA receptor composition at mature central synapses.
    Kopp C; Longordo F; Lüthi A
    Neuropharmacology; 2007 Jul; 53(1):1-9. PubMed ID: 17499817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning insights transmitted by glutamate.
    Antzoulatos EG; Byrne JH
    Trends Neurosci; 2004 Sep; 27(9):555-60. PubMed ID: 15331238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state.
    Huerta PT; Lisman JE
    Nature; 1993 Aug; 364(6439):723-5. PubMed ID: 8355787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Synaptic plasticity at the levels of the archicortex and neocortex].
    Voronin LL
    Neirofiziologiia; 1984; 16(5):651-65. PubMed ID: 6096737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible cellular basis for prolonged changes of synaptic efficiency--a simple case of learning.
    Andersen P
    Prog Brain Res; 1983; 58():419-26. PubMed ID: 6314432
    [No Abstract]   [Full Text] [Related]  

  • 20. [Inter-hippocampal projection of the post-commissural "output" of the CA1 sector neurons].
    Sperti L; Volta F; Bartesaghi R; Gessi T
    Boll Soc Ital Biol Sper; 1972 Jun; 48(12):327-30. PubMed ID: 5070103
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.