These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 8096427)
41. Crossed and uncrossed projections to cat sacrocaudal spinal cord: I. Axons from cutaneous receptors. Ritz LA; Brown PB; Bailey SM J Comp Neurol; 1989 Nov; 289(2):284-93. PubMed ID: 2808767 [TBL] [Abstract][Full Text] [Related]
42. Cervical primary afferent input to vestibulospinal neurons projecting to the cervical dorsal horn: an anterograde and retrograde tracing study in the cat. Bankoul S; Goto T; Yates B; Wilson VJ J Comp Neurol; 1995 Mar; 353(4):529-38. PubMed ID: 7539013 [TBL] [Abstract][Full Text] [Related]
43. Connexions between hair follicle afferent fibres and spinocervical tract neurones in the cat: the synthesis of receptive fields. Brown AG; Noble R J Physiol; 1982 Feb; 323():77-91. PubMed ID: 7097589 [TBL] [Abstract][Full Text] [Related]
44. Demonstration of glutamate immunoreactivity in vagal sensory afferents in the nucleus tractus solitarius of the rat. Sykes RM; Spyer KM; Izzo PN Brain Res; 1997 Jul; 762(1-2):1-11. PubMed ID: 9262152 [TBL] [Abstract][Full Text] [Related]
45. Synaptic organization of substance P, glutamate and GABA-immunoreactive boutons on functionally identified neurons in cat spinal deeper dorsal horn. Wei F; Zhao Z Sci China C Life Sci; 1997 Oct; 40(5):502-11. PubMed ID: 20229302 [TBL] [Abstract][Full Text] [Related]
46. Cervicothalamic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat. Broman J; Ottersen OP J Neurosci; 1992 Jan; 12(1):204-21. PubMed ID: 1370321 [TBL] [Abstract][Full Text] [Related]
47. Substance P- and GABA-like immunoreactivities are co-localized in axonal varicosities in the superficial laminae of cat but not rat spinal cord. Ma W; Ribeiro-da-Silva A Brain Res; 1995 Sep; 692(1-2):99-110. PubMed ID: 8548326 [TBL] [Abstract][Full Text] [Related]
48. The termination pattern and postsynaptic targets of rubrospinal fibers in the rat spinal cord: a light and electron microscopic study. Antal M; Sholomenko GN; Moschovakis AK; Storm-Mathisen J; Heizmann CW; Hunziker W J Comp Neurol; 1992 Nov; 325(1):22-37. PubMed ID: 1484116 [TBL] [Abstract][Full Text] [Related]
49. The GABA and substance P input to dopaminergic neurones in the substantia nigra of the rat. Bolam JP; Smith Y Brain Res; 1990 Oct; 529(1-2):57-78. PubMed ID: 1704287 [TBL] [Abstract][Full Text] [Related]
50. The development of cutaneous afferent pathways in fetal sheep: a structural and functional study. Rees S; Nitsos I; Rawson J Brain Res; 1994 Oct; 661(1-2):207-22. PubMed ID: 7834372 [TBL] [Abstract][Full Text] [Related]
51. GABA: a dominant neurotransmitter in the hypothalamus. Decavel C; Van den Pol AN J Comp Neurol; 1990 Dec; 302(4):1019-37. PubMed ID: 2081813 [TBL] [Abstract][Full Text] [Related]
52. Spiny nonpyramidal neurons in the CA3 region of the rat hippocampus are glutamate-like immunoreactive and receive convergent mossy fiber input. Soriano E; Frotscher M J Comp Neurol; 1993 Jul; 333(3):435-48. PubMed ID: 8102385 [TBL] [Abstract][Full Text] [Related]
53. Fine structure and synaptic architecture of HRP-labelled primary afferent terminations in lamina IIi of the rat dorsal horn. Cruz F; Lima D; Zieglgänsberger W; Coimbra A J Comp Neurol; 1991 Mar; 305(1):3-16. PubMed ID: 2033122 [TBL] [Abstract][Full Text] [Related]
54. Multiplicity of vestibulospinal projections to the upper cervical spinal cord of the cat: a study with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Donevan AH; Neuber-Hess M; Rose PK J Comp Neurol; 1990 Dec; 302(1):1-14. PubMed ID: 2086608 [TBL] [Abstract][Full Text] [Related]
55. Outflow of endogenous aspartate and glutamate from the rat spinal dorsal horn in vitro by activation of low- and high-threshold primary afferent fibers. Modulation by mu-opioids. Kangrga I; Randić M Brain Res; 1991 Jul; 553(2):347-52. PubMed ID: 1681984 [TBL] [Abstract][Full Text] [Related]
56. Glutamate-like immunoreactivity in the peripheral vestibular system of mammals. Demêmes D; Wenthold RJ; Moniot B; Sans A Hear Res; 1990 Jul; 46(3):261-9. PubMed ID: 1975572 [TBL] [Abstract][Full Text] [Related]
57. GABA- and glycine-like immunoreactivity in axons and dendrites contacting the central terminals of rapidly adapting glabrous skin afferents in rat spinal cord. Watson AH J Comp Neurol; 2003 Sep; 464(4):497-510. PubMed ID: 12900920 [TBL] [Abstract][Full Text] [Related]
58. Increased glutathione levels in neurochemically identified fibre systems in the aged rat lumbar motor nuclei. Ramírez-León V; Kullberg S; Hjelle OP; Ottersen OP; Ulfhake B Eur J Neurosci; 1999 Aug; 11(8):2935-48. PubMed ID: 10457189 [TBL] [Abstract][Full Text] [Related]
59. Compartmentation of glutamate and glutamine in the lateral cervical nucleus: further evidence for glutamate as a spinocervical tract neurotransmitter. Kechagias S; Broman J J Comp Neurol; 1994 Feb; 340(4):531-40. PubMed ID: 7516350 [TBL] [Abstract][Full Text] [Related]
60. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat. Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD J Comp Neurol; 1983 Dec; 221(4):466-81. PubMed ID: 6662983 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]