These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 809644)
41. [Growth and spore formation of Bacillus subtilis in periodic and dialysis cultured: experiment and modeling]. Evdokimova NV; Panikov NS Mikrobiologiia; 1994; 63(5):812-20. PubMed ID: 7898394 [TBL] [Abstract][Full Text] [Related]
42. [Effect of carbon and nitrogen sources and complex B vitamins on the synthesis of alkaline protease by different strains of Bacillus mesentericus and Bacillus subtilis]. Emtseva TV Prikl Biokhim Mikrobiol; 1975; 11(3):391-6. PubMed ID: 813199 [TBL] [Abstract][Full Text] [Related]
43. Production of bioemulsifier by Bacillus subtilis, Alcaligenes faecalis and Enterobacter species in liquid culture. Toledo FL; Gonzalez-Lopez J; Calvo C Bioresour Technol; 2008 Nov; 99(17):8470-5. PubMed ID: 18554901 [TBL] [Abstract][Full Text] [Related]
44. Cell physiology and protein secretion of Bacillus licheniformis compared to Bacillus subtilis. Voigt B; Antelmann H; Albrecht D; Ehrenreich A; Maurer KH; Evers S; Gottschalk G; van Dijl JM; Schweder T; Hecker M J Mol Microbiol Biotechnol; 2009; 16(1-2):53-68. PubMed ID: 18957862 [TBL] [Abstract][Full Text] [Related]
45. Inhibition of the growth of Ascosphaera apis by Bacillus and Paenibacillus strains isolated from honey. Reynaldi FJ; De Giusti MR; Alippi AM Rev Argent Microbiol; 2004; 36(1):52-5. PubMed ID: 15174751 [TBL] [Abstract][Full Text] [Related]
46. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Leifert C; Li H; Chidburee S; Hampson S; Workman S; Sigee D; Epton HA; Harbour A J Appl Bacteriol; 1995 Feb; 78(2):97-108. PubMed ID: 7698955 [TBL] [Abstract][Full Text] [Related]
47. Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms. Coorevits A; De Jonghe V; Vandroemme J; Reekmans R; Heyrman J; Messens W; De Vos P; Heyndrickx M Syst Appl Microbiol; 2008 Jun; 31(2):126-40. PubMed ID: 18406093 [TBL] [Abstract][Full Text] [Related]
48. [beta-1,3-1,4-Glucanase in spore-forming microorganisms. I. beta-Glucanase production during the growth cycle of Bacillus subtilis (Marburg Yale)]. Borriss R Z Allg Mikrobiol; 1976; 16(6):475-7. PubMed ID: 824871 [No Abstract] [Full Text] [Related]
49. Cell polarity in Bacillus subtilis: effect of growth conditions on spore positions in sister cells. Dunn G; Mandelstam J J Gen Microbiol; 1977 Nov; 103(1):201-5. PubMed ID: 412916 [No Abstract] [Full Text] [Related]
50. Effect of various growth conditions on spore formation and bacillomycin L production in Bacillus subtilis. Chevanet C; Besson F; Michel G Can J Microbiol; 1986 Mar; 32(3):254-8. PubMed ID: 3011233 [TBL] [Abstract][Full Text] [Related]
51. Spore-forming bacteria and their utilisation as probiotics. Bader J; Albin A; Stahl U Benef Microbes; 2012 Mar; 3(1):67-75. PubMed ID: 22348911 [TBL] [Abstract][Full Text] [Related]
52. [Lipolytic activity of the spore-forming bacterium, Bacillus subtilis]. Lobyreva LB; Marchenkova AI Mikrobiologiia; 1979; 48(2):208-11. PubMed ID: 108527 [No Abstract] [Full Text] [Related]
53. Identification of ninhydrin-positive caprolactam metabolites in the rat. Kirk LK; Lewis BA; Ross DA; Morrison MA Food Chem Toxicol; 1987 Mar; 25(3):233-9. PubMed ID: 3570112 [TBL] [Abstract][Full Text] [Related]
54. Solid-state Co-cultivation of Bacillus subtilis, Bacillus mucilaginosus, and Paecilomyces lilacinus Using Tobacco Waste Residue. Dai JY; Yang Y; Dong YS; Xiu ZL Appl Biochem Biotechnol; 2020 Mar; 190(3):1092-1105. PubMed ID: 31701376 [TBL] [Abstract][Full Text] [Related]
55. Pigmentation and sporulation are alternative cell fates in Bacillus pumilus SF214. Manzo N; Di Luccia B; Isticato R; D'Apuzzo E; De Felice M; Ricca E PLoS One; 2013; 8(4):e62093. PubMed ID: 23634224 [TBL] [Abstract][Full Text] [Related]
56. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus. Di Luccia B; Riccio A; Vanacore A; Baccigalupi L; Molinaro A; Ricca E Mar Drugs; 2015 Oct; 13(10):6472-88. PubMed ID: 26506360 [TBL] [Abstract][Full Text] [Related]
57. Disposition of [14C]caprolactam in the rat. Unger PD; Salerno AJ; Friedman MA Food Cosmet Toxicol; 1981 Aug; 19(4):457-62. PubMed ID: 7274879 [No Abstract] [Full Text] [Related]
58. Isolation and characterization of a novel ε-caprolactam-degrading microbe, Acinetobacter calcoaceticus, from industrial wastewater by chemostat-enrichment. Rajoo S; Ahn JO; Lee HW; Jung JK Biotechnol Lett; 2013 Dec; 35(12):2069-72. PubMed ID: 23974491 [TBL] [Abstract][Full Text] [Related]
59. Control of carbon and nitrogen metabolism in Bacillus subtilis. Fisher SH; Sonenshein AL Annu Rev Microbiol; 1991; 45():107-35. PubMed ID: 1741612 [No Abstract] [Full Text] [Related]
60. [Bacteria that degrade low-molecular linear epsilon-caprolactam olygomers]. Esikova TZ; Akatova EV; Taran SA Prikl Biokhim Mikrobiol; 2014; 50(5):481-9. PubMed ID: 25707105 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]