These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 8096629)
81. Transmitter release from brain slices elicited by single pulses: a powerful method to study presynaptic mechanisms. Singer EA Trends Pharmacol Sci; 1988 Aug; 9(8):274-6. PubMed ID: 2907952 [No Abstract] [Full Text] [Related]
83. Phillygenin Suppresses Glutamate Exocytosis in Rat Cerebrocortical Nerve Terminals (Synaptosomes) through the Inhibition of Ca Lee MY; Lin TY; Chang YY; Chiu KM; Wang SJ Biomedicines; 2024 Feb; 12(3):. PubMed ID: 38540109 [TBL] [Abstract][Full Text] [Related]
84. Kaempferol 3-Rhamnoside on Glutamate Release from Rat Cerebrocortical Nerve Terminals Involves P/Q-Type Ca Lin TK; Hung CF; Weng JR; Hsieh TY; Wang SJ Molecules; 2022 Feb; 27(4):. PubMed ID: 35209129 [TBL] [Abstract][Full Text] [Related]
85. Inhibition of Glutamate Release from Rat Cortical Nerve Terminals by Dehydrocorydaline, an Alkaloid from Lin TY; Chen IY; Lee MY; Lu CW; Chiu KM; Wang SJ Molecules; 2022 Jan; 27(3):. PubMed ID: 35164225 [TBL] [Abstract][Full Text] [Related]
86. Ferulic acid suppresses glutamate release through inhibition of voltage-dependent calcium entry in rat cerebrocortical nerve terminals. Lin TY; Lu CW; Huang SK; Wang SJ J Med Food; 2013 Feb; 16(2):112-9. PubMed ID: 23342970 [TBL] [Abstract][Full Text] [Related]
87. Idebenone inhibition of glutamate release from rat cerebral cortex nerve endings by suppression of voltage-dependent calcium influx and protein kinase A. Chang Y; Lin YW; Wang SJ Naunyn Schmiedebergs Arch Pharmacol; 2011 Jul; 384(1):59-70. PubMed ID: 21541760 [TBL] [Abstract][Full Text] [Related]
88. Attenuation of phospholipid signaling provides a novel mechanism for the action of valproic acid. Xu X; Müller-Taubenberger A; Adley KE; Pawolleck N; Lee VW; Wiedemann C; Sihra TS; Maniak M; Jin T; Williams RS Eukaryot Cell; 2007 Jun; 6(6):899-906. PubMed ID: 17435006 [TBL] [Abstract][Full Text] [Related]
89. Presynaptic cross-talk of beta-adrenoreceptor and 5-hydroxytryptamine receptor signalling in the modulation of glutamate release from cerebrocortical nerve terminals. Wang SJ; Coutinho V; Sihra TS Br J Pharmacol; 2002 Dec; 137(8):1371-9. PubMed ID: 12466248 [TBL] [Abstract][Full Text] [Related]
90. An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. Wiedemann C; Schäfer T; Burger MM; Sihra TS J Neurosci; 1998 Aug; 18(15):5594-602. PubMed ID: 9671651 [TBL] [Abstract][Full Text] [Related]
91. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction. Zengel JE; Sosa MA J Physiol; 1994 Jun; 477(Pt 2):267-77. PubMed ID: 7932218 [TBL] [Abstract][Full Text] [Related]
92. Characterization of the carrier-mediated [3H]GABA release from isolated synaptic plasma membrane vesicles. Gonçalves PP; Carvalho AP Neurochem Res; 1995 Feb; 20(2):177-86. PubMed ID: 7783842 [TBL] [Abstract][Full Text] [Related]
94. Presynaptic modulation of sympathetic neurotransmitter release by modulators of cyclic 3',5'-guanosine monophosphate in canine vascular smooth muscle. Greenberg SS; Diecke FP; Curro FA; Peevy K; Tanaka TP Ann N Y Acad Sci; 1990; 604():305-22. PubMed ID: 1977353 [No Abstract] [Full Text] [Related]
95. Mechanisms in the regulation of neurotransmitter release from brain nerve terminals: current hypotheses. Sihra TS; Nichols RA Neurochem Res; 1993 Jan; 18(1):47-58. PubMed ID: 8096629 [No Abstract] [Full Text] [Related]
96. A theoretical study of calcium entry in nerve terminals, with application to neurotransmitter release. Parnas H; Segel LA J Theor Biol; 1981 Jul; 91(1):125-69. PubMed ID: 6117676 [No Abstract] [Full Text] [Related]