These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 8096871)
1. Effect of rice husbandry on mosquito breeding at Mwea Rice Irrigation Scheme with reference to biocontrol strategies. Asimeng EJ; Mutinga MJ J Am Mosq Control Assoc; 1993 Mar; 9(1):17-22. PubMed ID: 8096871 [TBL] [Abstract][Full Text] [Related]
2. Isolation of mosquito-toxic bacteria from mosquito-breeding sites in Kenya. Asimeng EJ; Mutinga MJ J Am Mosq Control Assoc; 1992 Mar; 8(1):86-8. PubMed ID: 1583497 [TBL] [Abstract][Full Text] [Related]
3. Environmental abundance of Anopheles (Diptera: Culicidae) larval habitats on land cover change sites in Karima Village, Mwea Rice Scheme, Kenya. Jacob BG; Muturi E; Halbig P; Mwangangi J; Wanjogu RK; Mpanga E; Funes J; Shililu J; Githure J; Regens JL; Novak RJ Am J Trop Med Hyg; 2007 Jan; 76(1):73-80. PubMed ID: 17255233 [TBL] [Abstract][Full Text] [Related]
4. An evaluation of Gambusia affinis and Bacillus thuringiensis var. israelensis as mosquito control agents in California wild rice fields. Kramer VL; Garcia R; Colwell AE J Am Mosq Control Assoc; 1988 Dec; 4(4):470-8. PubMed ID: 2906358 [TBL] [Abstract][Full Text] [Related]
5. [Characteristics of Bacillus thuringiensis var. israelensis and its effect on mosquito larvae (Diptera: Culicidae)]. Müller P Angew Parasitol; 1984 Aug; 25(3):157-63. PubMed ID: 6149708 [No Abstract] [Full Text] [Related]
6. Evaluation of various control agents against mosquito larvae in rice paddies in Taiwan. Teng HJ; Lu LC; Wu YL; Fang JG J Vector Ecol; 2005 Jun; 30(1):126-32. PubMed ID: 16007966 [TBL] [Abstract][Full Text] [Related]
7. Control of mosquito breeding through Gambusia affinis in rice fields. Prasad H; Prasad RN; Haq S Indian J Malariol; 1993 Jun; 30(2):57-65. PubMed ID: 8405595 [TBL] [Abstract][Full Text] [Related]
8. Predation efficacy of the fish muddy loach, Misgurnus mizolepis, against Aedes and Culex mosquitoes in laboratory and small rice plots. Lee DK J Am Mosq Control Assoc; 2000 Sep; 16(3):258-61. PubMed ID: 11081657 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of Czechoslovak and Soviet Bacillus thuringiensis (serotype H-14) formulations against mosquito larvae. Rettich F J Hyg Epidemiol Microbiol Immunol; 1987; 31(1):53-63. PubMed ID: 2883232 [TBL] [Abstract][Full Text] [Related]
10. Larval habitat dynamics and diversity of Culex mosquitoes in rice agro-ecosystem in Mwea, Kenya. Muturi EJ; Shililu JI; Gu W; Jacob BG; Githure JI; Novak RJ Am J Trop Med Hyg; 2007 Jan; 76(1):95-102. PubMed ID: 17255236 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of various Bacillus thuringiensis var. israelensis formulations against Psorophora columbiae larvae as assessed in small rice plots, 1984-88. Meisch MV; Finch MF; Weathersbee AA; Jones JW; Bassi DG; Bowles DE J Am Mosq Control Assoc; 1990 Mar; 6(1):93-5. PubMed ID: 1969931 [TBL] [Abstract][Full Text] [Related]
12. Predatory potential of Nepa cinerea against mosquito larvae in laboratory conditions. Singh RK; Singh SP J Commun Dis; 2004 Jun; 36(2):105-10. PubMed ID: 16295671 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of the efficacy of a combination of Mesocyclops aspericornis and Bacillus thuringiensis var. israelensis by community-based products in controlling Aedes aegypti larvae in Thailand. Kosiyachinda P; Bhumiratana A; Kittayapong P Am J Trop Med Hyg; 2003 Aug; 69(2):206-12. PubMed ID: 13677377 [TBL] [Abstract][Full Text] [Related]
14. Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar. israelensis against two Florida mosquito species. Nayar JK; Knight JW; Ali A; Carlson DB; O'Bryan PD J Am Mosq Control Assoc; 1999 Mar; 15(1):32-42. PubMed ID: 10342266 [TBL] [Abstract][Full Text] [Related]
15. Distribution of mosquito larvae within the paddy and its implication in larvicidal application in Mwea rice irrigation scheme, Central Kenya. Mwangangi JM; Muturi EJ; Shililu JI; Jacob B; Kabiru EW; Mbogo CM; Githure JI; Novak RJ J Am Mosq Control Assoc; 2008 Mar; 24(1):36-41. PubMed ID: 18437812 [TBL] [Abstract][Full Text] [Related]
16. Laboratory and field evaluation of Teknar HP-D, a biolarvicidal formulation of Bacillus thuringiensis ssp. israelensis, against mosquito vectors. Gunasekaran K; Doss PS; Vaidyanathan K Acta Trop; 2004 Oct; 92(2):109-18. PubMed ID: 15350862 [TBL] [Abstract][Full Text] [Related]
17. Prospects for the use of larvivorous fish for malaria control in Ethiopia: search for indigenous species and evaluation of their feeding capacity for mosquito larvae. Fletcher M; Teklehaimanot A; Yemane G; Kassahun A; Kidane G; Beyene Y J Trop Med Hyg; 1993 Feb; 96(1):12-21. PubMed ID: 8429570 [TBL] [Abstract][Full Text] [Related]
18. Use of Bactimos briquets (B.t.i. formulation) combined with the backswimmer Notonecta irrorata (Hemiptera:Notonectidae) for control of mosquito larvae. Neri-Barbosa JF; Quiroz-Martinez H; Rodriguez-Tovar ML; Tejada LO; Badii MH J Am Mosq Control Assoc; 1997 Mar; 13(1):87-9. PubMed ID: 9152881 [TBL] [Abstract][Full Text] [Related]
19. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Arredondo-Jiménez JI; Valdez-Delgado KM Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749 [TBL] [Abstract][Full Text] [Related]
20. Host range and selected factors influencing the mosquito larvicidal activity of the PG-14 isolate of Bacillus thuringiensis var. morrisoni. Lacey LA; Lacey CM; Padua LE J Am Mosq Control Assoc; 1988 Mar; 4(1):39-43. PubMed ID: 3193097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]