BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8097291)

  • 1. 2-Oxoglutarate transport: a potential mechanism for regulating glutamate and tricarboxylic acid cycle intermediates in neurons.
    Shank RP; Bennett DJ
    Neurochem Res; 1993 Apr; 18(4):401-10. PubMed ID: 8097291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamine, glutamate, and other possible regulators of alpha-ketoglutarate and malate uptake by synaptic terminals.
    Shank RP; Campbell GL
    J Neurochem; 1984 Apr; 42(4):1162-9. PubMed ID: 6142092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of 2-oxoglutarate uptake by synaptosomes from bovine and rat retina and cerebral cortex and regulation by glutamate and glutamine.
    Lehmann JC; Kapkov D; Shank RP
    Dev Neurosci; 1993; 15(3-5):330-5. PubMed ID: 7805586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-ketoglutarate and malate uptake and metabolism by synaptosomes: further evidence for an astrocyte-to-neuron metabolic shuttle.
    Shank RP; Campbell GL
    J Neurochem; 1984 Apr; 42(4):1153-61. PubMed ID: 6699641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamine and 2-oxoglutarate as metabolic precursors of the transmitter pools of glutamate and GABA: correlation of regional uptake by rat brain synaptosomes.
    Shank RP; Baldy WJ; Ash CW
    Neurochem Res; 1989 Apr; 14(4):371-6. PubMed ID: 2569675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of glutamine transport in rat brain mitochondria by some amino acids and tricarboxylic acid cycle intermediates.
    Roberg B; Torgner IA; Kvamme E
    Neurochem Res; 1999 Jul; 24(7):809-14. PubMed ID: 10403619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of alpha-ketoglutarate, malate and succinate from cultured astrocytes: possible role in amino acid neurotransmitter homeostasis.
    Westergaard N; Sonnewald U; Schousboe A
    Neurosci Lett; 1994 Jul; 176(1):105-9. PubMed ID: 7970224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of transmitter glutamate and the glial-neuron interrelationship.
    Torgner I; Kvamme E
    Mol Chem Neuropathol; 1990 Jan; 12(1):11-7. PubMed ID: 1980584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle.
    Yudkoff M; Nelson D; Daikhin Y; Erecińska M
    J Biol Chem; 1994 Nov; 269(44):27414-20. PubMed ID: 7961653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of aspartate and glutamate on the oxoglutarate carrier investigated in rat heart mitochondria and inverted submitochondrial vesicles.
    Hautecler JJ; Sluse-Goffart CM; Evens A; Duyckaerts C; Sluse FE
    Biochim Biophys Acta; 1994 Apr; 1185(2):153-9. PubMed ID: 7909447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamine and alpha-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum.
    Shank RP; Campbell GL
    Neurochem Res; 1982 May; 7(5):601-16. PubMed ID: 6126832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatocyte heterogeneity in uptake and metabolism of malate and related dicarboxylates in perfused rat liver.
    Stoll B; Hüssinger D
    Eur J Biochem; 1991 Jan; 195(1):121-9. PubMed ID: 1899378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart.
    Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK
    Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria.
    Dennis SC; Clark JB
    Biochem J; 1978 Apr; 172(1):155-62. PubMed ID: 656069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic compartmentation in cortical synaptosomes: influence of glucose and preferential incorporation of endogenous glutamate into GABA.
    Sonnewald U; McKenna M
    Neurochem Res; 2002 Feb; 27(1-2):43-50. PubMed ID: 11926275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons.
    Waagepetersen HS; Qu H; Sonnewald U; Shimamoto K; Schousboe A
    Neurochem Int; 2005 Jul; 47(1-2):92-102. PubMed ID: 15921825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Oxo-[14C]glutarate is taken up by glutamatergic nerve terminals in the rat striatum.
    Carter CJ; Savasta M; Fage D; Scatton B
    Neurosci Lett; 1986 Dec; 72(2):227-31. PubMed ID: 2880322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of brain mitochondrial glutamate and alpha-ketoglutarate transport under physiologic conditions.
    Berkich DA; Xu Y; LaNoue KF; Gruetter R; Hutson SM
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):106-13. PubMed ID: 15558751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral alanine transport and alanine aminotransferase reaction: alanine as a source of neuronal glutamate.
    Erecińska M; Nelson D; Nissim I; Daikhin Y; Yudkoff M
    J Neurochem; 1994 May; 62(5):1953-64. PubMed ID: 7908947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.