These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Characterization of the metabotropic glutamate receptor in mouse cerebellar granule cells: lack of effect of 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo(F)-quinoxaline (NBQX). Suzdak PD; Sheardown MJ; Honoré T Eur J Pharmacol; 1993 May; 245(3):215-20. PubMed ID: 7687559 [TBL] [Abstract][Full Text] [Related]
4. Modulation by ionotropic excitatory amino acids and potassium of (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid-stimulated phosphoinositide hydrolysis in mouse cerebellar granule cells. Gorman AM; Grieve A; Griffiths R J Neurochem; 1995 Dec; 65(6):2473-83. PubMed ID: 7595541 [TBL] [Abstract][Full Text] [Related]
5. Intrauterine hypoxia-ischemia reduces phosphoinositide hydrolysis stimulated by metabotropic glutamate receptor agonists in cultured rat cerebellar granule cells. Rhodes PG; Cai Z Brain Res Dev Brain Res; 1996 May; 93(1-2):129-35. PubMed ID: 8804699 [TBL] [Abstract][Full Text] [Related]
6. Prenatal ethanol exposure reduces phosphoinositide hydrolysis stimulated by quisqualate in rat cerebellar granule cell cultures. Rhodes PG; Cai Z; Zhu N Mol Chem Neuropathol; 1994 Sep; 23(1):63-76. PubMed ID: 7893331 [TBL] [Abstract][Full Text] [Related]
7. Metabotropic glutamate receptor modulation of cAMP accumulation in the neonatal rat hippocampus. Schoepp DD; Johnson BG Neuropharmacology; 1993 Dec; 32(12):1359-65. PubMed ID: 7512234 [TBL] [Abstract][Full Text] [Related]
8. Multiple subtypes of excitatory amino acid receptors coupled to the hydrolysis of phosphoinositides in rat brain. Littman L; Glatt BS; Robinson MB J Neurochem; 1993 Aug; 61(2):586-93. PubMed ID: 8101559 [TBL] [Abstract][Full Text] [Related]
9. The enhancement and the inhibition of noradrenaline-induced cyclic AMP accumulation in rat brain by stimulation of metabotropic glutamate receptors. Pilc A; Legutko B; Czyrak A Prog Neuropsychopharmacol Biol Psychiatry; 1996 May; 20(4):673-90. PubMed ID: 8843491 [TBL] [Abstract][Full Text] [Related]
10. Potentiation of NMDA receptor-mediated transmission in turtle cerebellar granule cells by activation of metabotropic glutamate receptors. Kinney GA; Slater NT J Neurophysiol; 1993 Feb; 69(2):585-94. PubMed ID: 7681476 [TBL] [Abstract][Full Text] [Related]
11. Pharmacological characterization of the metabotropic glutamate receptor inhibiting D-[3H]-aspartate output in rat striatum. Lombardi G; Alesiani M; Leonardi P; Cherici G; Pellicciari R; Moroni F Br J Pharmacol; 1993 Dec; 110(4):1407-12. PubMed ID: 8306080 [TBL] [Abstract][Full Text] [Related]
16. The effects of L-glutamate and trans-(+-)-1-amino-1,3-cyclopentanedicarboxylate on phosphoinositide hydrolysis can be pharmacologically differentiated. Littman L; Robinson MB J Neurochem; 1994 Oct; 63(4):1291-302. PubMed ID: 7931281 [TBL] [Abstract][Full Text] [Related]
17. Calcium influx via ionotropic glutamate receptors causes long lasting inhibition of metabotropic glutamate receptor-coupled phosphoinositide hydrolysis. Facchinetti F; Hack NJ; Balázs R Neurochem Int; 1998 Sep; 33(3):263-70. PubMed ID: 9759922 [TBL] [Abstract][Full Text] [Related]
18. (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors mediate a calcium-dependent inhibition of the metabotropic glutamate receptor-stimulated formation of inositol 1,4,5-trisphosphate. Lonart G; Alagarsamy S; Johnson KM J Neurochem; 1993 May; 60(5):1739-45. PubMed ID: 7682601 [TBL] [Abstract][Full Text] [Related]
19. Functional evidence for a L-AP3-sensitive metabotropic receptor different from glutamate metabotropic receptor mGluR1. Manev RM; Favaron M; Gabellini N; Candeo P; Manev H Neurosci Lett; 1993 May; 155(1):73-6. PubMed ID: 8361667 [TBL] [Abstract][Full Text] [Related]