These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Glutamate neurons in hypothalamus regulate excitatory transmission. van den Pol AN; Trombley PQ J Neurosci; 1993 Jul; 13(7):2829-36. PubMed ID: 8101211 [TBL] [Abstract][Full Text] [Related]
6. Synaptically released and exogenous ACh activates different nicotinic receptors to enhance evoked glutamatergic transmission in the lateral geniculate nucleus. Guo JZ; Liu Y; Sorenson EM; Chiappinelli VA J Neurophysiol; 2005 Oct; 94(4):2549-60. PubMed ID: 15972832 [TBL] [Abstract][Full Text] [Related]
7. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Travagli RA; Gillis RA; Rossiter CD; Vicini S Am J Physiol; 1991 Mar; 260(3 Pt 1):G531-6. PubMed ID: 1672243 [TBL] [Abstract][Full Text] [Related]
8. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors. Nisenbaum ES; Berger TW; Grace AA Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549 [TBL] [Abstract][Full Text] [Related]
9. Adenosine pre- and postsynaptic modulation of glutamate-dependent calcium activity in hypothalamic neurons. Obrietan K; Belousov AB; Heller HC; van den Pol AN J Neurophysiol; 1995 Nov; 74(5):2150-62. PubMed ID: 8592203 [TBL] [Abstract][Full Text] [Related]
10. The postsynaptic induction of nonassociative long-term depression of excitatory synaptic transmission in rat hippocampal slices. Christofi G; Nowicky AV; Bolsover SR; Bindman LJ J Neurophysiol; 1993 Jan; 69(1):219-29. PubMed ID: 8094430 [TBL] [Abstract][Full Text] [Related]
12. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus. Lamsa K; Palva JM; Ruusuvuori E; Kaila K; Taira T J Neurophysiol; 2000 Jan; 83(1):359-66. PubMed ID: 10634879 [TBL] [Abstract][Full Text] [Related]
13. Dopamine inhibition: enhancement of GABA activity and potassium channel activation in hypothalamic and arcuate nucleus neurons. Belousov AB; van den Pol AN J Neurophysiol; 1997 Aug; 78(2):674-88. PubMed ID: 9307104 [TBL] [Abstract][Full Text] [Related]
14. Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons. Wang YF; Gao XB; van den Pol AN J Neurophysiol; 2001 Sep; 86(3):1252-65. PubMed ID: 11535674 [TBL] [Abstract][Full Text] [Related]
15. Characterization of neuronal migration disorders in neocortical structures. II. Intracellular in vitro recordings. Luhmann HJ; Karpuk N; Qü M; Zilles K J Neurophysiol; 1998 Jul; 80(1):92-102. PubMed ID: 9658031 [TBL] [Abstract][Full Text] [Related]
16. Postsynaptic IP3 receptor-mediated Ca2+ release modulates synaptic transmission in hippocampal neurons. Kelly PT; Mackinnon RL; Dietz RV; Maher BJ; Wang J Brain Res Mol Brain Res; 2005 Apr; 135(1-2):232-48. PubMed ID: 15857686 [TBL] [Abstract][Full Text] [Related]
18. GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons. Obrietan K; van den Pol AN J Neurophysiol; 1998 Mar; 79(3):1360-70. PubMed ID: 9497417 [TBL] [Abstract][Full Text] [Related]
19. Synaptic responses of guinea pig and rat central amygdala neurons in vitro. Nose I; Higashi H; Inokuchi H; Nishi S J Neurophysiol; 1991 May; 65(5):1227-41. PubMed ID: 1678422 [TBL] [Abstract][Full Text] [Related]
20. Electrophysiology of the suprachiasmatic nucleus: synaptic transmission, membrane properties, and neuronal synchronization. Dudek FE; Kim YI; Bouskila Y J Biol Rhythms; 1993; 8 Suppl():S33-7. PubMed ID: 8274761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]