These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8097905)

  • 41. Nonpolar amino acid substitutions of potential cation binding residues glu-955 and glu-956 of the rat alpha 1 isoform of Na+, K(+)-ATPase.
    Van Huysse JW; Lingrel JB
    Cell Mol Biol Res; 1993; 39(5):497-507. PubMed ID: 8173592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. L-sorbose does not cause hemolysis in dog erythrocytes with inherited high Na, K-ATPase activity.
    Goto I; Shimizu T; Maede Y
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Apr; 101(3):657-60. PubMed ID: 1354145
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microprobe analysis of element distribution in rabbit and dog erythrocytes as examples of "high" and "low" potassium cells.
    Catchpole HR; Engel MB
    Scanning Microsc; 1996; 10(3):745-51; discussion 751-2. PubMed ID: 9813637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of glutamine on glutathione kinetics in vivo in dogs.
    Humbert B; Nguyen P; Martin L; Dumon H; Vallette G; Maugère P; Darmaun D
    J Nutr Biochem; 2007 Jan; 18(1):10-6. PubMed ID: 16563721
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Potassium transport in erythrocytes from patients with gentamicin intolerance].
    Toropova FV; Smirnov AIu; Smirnova OI; Marakhova II
    Tsitologiia; 2002; 44(12):1194-8. PubMed ID: 12683330
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence for tryptophan residues in the cation transport path of the Na(+),K(+)-ATPase.
    Yudowski GA; Bar Shimon M; Tal DM; González-Lebrero RM; Rossi RC; Garrahan PJ; Beaugé LA; Karlish SJ
    Biochemistry; 2003 Sep; 42(34):10212-22. PubMed ID: 12939149
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impairment of sodium pump and Na/H exchanger in erythrocytes from non-insulin dependent diabetes mellitus patients: effect of tea catechins.
    Rizvi SI; Zaid MA
    Clin Chim Acta; 2005 Apr; 354(1-2):59-67. PubMed ID: 15748600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. l-Cysteine and glutathione restore the modulation of rat frontal cortex Na+, K+ -ATPase activity induced by aspartame metabolites.
    Simintzi I; Schulpis KH; Angelogianni P; Liapi C; Tsakiris S
    Food Chem Toxicol; 2008 Jun; 46(6):2074-9. PubMed ID: 18343556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An X-ray microanalysis study of cation changes during development in erythropoietic cells.
    Kirk RG; Andrews SB; Lee P
    Scan Electron Microsc; 1983; (Pt 2):793-800. PubMed ID: 6635576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The cation composition of the red cells of sheep with an inherited deficiency of reduced glutathione.
    Tucker EM; Ellory JC
    Res Vet Sci; 1971 Nov; 12(6):600-2. PubMed ID: 5145359
    [No Abstract]   [Full Text] [Related]  

  • 52. Electron probe microanalysis of red blood cells. II. Cation changes during maturation.
    Kirk RG; Lee P; Tosteson DC
    Am J Physiol; 1978 Nov; 235(5):C251-5. PubMed ID: 727248
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cation transport in different volume populations of genetically low K+ lamb red cells.
    Lauf PK; Valet G
    J Cell Physiol; 1980 Sep; 104(3):283-93. PubMed ID: 7419606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.
    Vokurková M; Rauchová H; Dobešová Z; Loukotová J; Nováková O; Kuneš J; Zicha J
    Physiol Res; 2016; 65(1):91-9. PubMed ID: 26988297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Changes in carbohydrate and amino acid metabolism in dog brain in experimental alloxan diabetes. 2].
    Egian VB; Buniatian HCh; Turshian GA; Hagopian GE
    Vopr Biokhim Mozga; 1970; 6():147-56. PubMed ID: 5526449
    [No Abstract]   [Full Text] [Related]  

  • 56. Ion transport in sheep red blood cells.
    Dunham PB
    Comp Biochem Physiol Comp Physiol; 1992 Aug; 102(4):625-30. PubMed ID: 1355026
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasma glutamate and aspartate concentrations in young infants on Neopham.
    Bell EF; Filer LJ; Stegink LD
    Acta Chir Scand Suppl; 1983; 517():29-37. PubMed ID: 6145275
    [No Abstract]   [Full Text] [Related]  

  • 58. Reduced glutathione accelerates the oxidative damage produced by sodium n-propylthiosulfate, one of the causative agents of onion-induced hemolytic anemia in dogs.
    Yamato O; Hayashi M; Kasai E; Tajima M; Yamasaki M; Maede Y
    Biochim Biophys Acta; 1999 Apr; 1427(2):175-82. PubMed ID: 10216234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pseudohyperkalemia in Akitas.
    Degen M
    J Am Vet Med Assoc; 1987 Mar; 190(5):541-3. PubMed ID: 3558091
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes from high potassium (hk) to low potassium (lk) in bovine red cells.
    Israel Y; Macdonald A; Bernstein J; Rosenmann E
    J Gen Physiol; 1972 Mar; 59(3):270-84. PubMed ID: 4258145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.