These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 809808)

  • 1. Aspects of structure and photosynthetic competence of Euglena plastids under conditions of greening and degreening.
    Ophir I; Talmon A; Polak-Charcon S; Ben-Shaul Y
    Protoplasma; 1975; 84(3-4):283-95. PubMed ID: 809808
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional and structural organization of chlorophyll in the developing photosynthetic membranes of Euglena gracilis Z. II. Formation of system II photosynthetic units during greening under optimal light intensity.
    Dubertret G; Lefort-Tran M
    Biochim Biophys Acta; 1978 Aug; 503(2):316-32. PubMed ID: 99170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and structural organization of chlorophyll in the developing photosynthetic membranes of Euglena gracilis Z. IV. Light-harvesting properties of system II photosynthetic units and thylakoid ultrastructure during greening under intermittent light.
    Dubertret G; Lefort-Tran M
    Biochim Biophys Acta; 1981 Jan; 634(1):52-69. PubMed ID: 6781538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room temperature microspectrofluorimetry as a useful tool for studying the assembly of the PSII chlorophyll-protein complexes in single living cells of etiolated Euglena gracilis Klebs during the greening process.
    Pancaldi S; Baldisserotto C; Ferroni L; Bonora A; Fasulo MP
    J Exp Bot; 2002 Aug; 53(375):1753-63. PubMed ID: 12147725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of x-rays and inhibitors of protein synthesis on the synthesis of chlorophyll and NADP-linked glyceraldehyde 3-phosphate dehydrogenase in greening Euglena gracilis].
    Theiss-Seuberling HB
    Arch Mikrobiol; 1973; 92(4):331-44. PubMed ID: 4130095
    [No Abstract]   [Full Text] [Related]  

  • 6. PRESSURE-INDUCED COLOR MUTATION OF EUGLENA GRACILIS.
    GROSS JA
    Science; 1965 Feb; 147(3659):741-2. PubMed ID: 14242019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis and photosynthetic pigments in the flagellate Euglena gracilis - as sensitive endpoints for toxicity evaluation of liquid detergents.
    Azizullah A; Richter P; Häder DP
    J Photochem Photobiol B; 2014 Apr; 133():18-26. PubMed ID: 24658006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorophyll photobleaching and ethane production in dichlorophenyldimethylurea- (DCMU) or paraquat-treated Euglena gracilis cells.
    Elstner EF; Osswald W
    Z Naturforsch C Biosci; 1980; 35(1-2):129-35. PubMed ID: 6773255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effect of hypergravity on photosynthetic carbon dioxide fixation in Euglena gracilis.
    Ortiz W; Wignarajah K; Smith JD
    J Plant Physiol; 2000 Aug; 157(2):231-4. PubMed ID: 11543574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-induced changes of radioactivities in the 14C-labeled lipids and fatty acids of dark grown Euglena gracilis.
    Pohl P
    Z Naturforsch C; 1973; 28(5):264-9. PubMed ID: 4272178
    [No Abstract]   [Full Text] [Related]  

  • 11. LIPID ALTERATIONS IN EUGLENA GRACILIS CELLS DURING LIGHT-INDUCED GREENING.
    ROSENBERG A; PECKER M
    Biochemistry; 1964 Feb; 3():254-8. PubMed ID: 14163949
    [No Abstract]   [Full Text] [Related]  

  • 12. Factors affecting pH-dependent photo-inhibition of division in Euglena gracilis.
    Cook JR; Kaiser H
    J Cell Physiol; 1973 Dec; 82(3):489-95. PubMed ID: 4204328
    [No Abstract]   [Full Text] [Related]  

  • 13. Adaptive modifications of the photosynthetic apparatus in Euglena gracilis Klebs exposed to manganese excess.
    Ferroni L; Baldisserotto C; Fasulo MP; Pagnoni A; Pancaldi S
    Protoplasma; 2004 Dec; 224(3-4):167-77. PubMed ID: 15614477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Events surrounding the early development of Euglena chloroplasts XI. Protochlorophyll(ide) and its photoconversion.
    Cohen CE; Schiff JA
    Photochem Photobiol; 1976 Dec; 24(6):555-66. PubMed ID: 828273
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of polychlorobiphenyls (Aroclor 1242) on bicarbonate-C14 uptake by Euglena gracilis.
    Bryan AM; Olafsson PG
    Bull Environ Contam Toxicol; 1978 Mar; 19(3):374-81. PubMed ID: 417750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen activation by isolated chloroplasts from Euglena gracilis. Ferredoxin-dependent function of a fluorescent compound and photosynthetic electron transport close to photosystem.
    Elstner EF; Wildner GF; Heupel A
    Arch Biochem Biophys; 1976 Apr; 173(2):623-30. PubMed ID: 179469
    [No Abstract]   [Full Text] [Related]  

  • 17. Proceedings: Chloroplastic origin of membrane proteins required for photosystem II activity in Euglena chloroplasts.
    Gurevitz M; Kratz H; Ohad I
    Isr J Med Sci; 1975 Nov; 11(11):1191. PubMed ID: 812840
    [No Abstract]   [Full Text] [Related]  

  • 18. Some evidence for light-induced transfers of fatty acids in Euglena gracilis.
    Pohl P
    Z Naturforsch C; 1973; 28(5):270-84. PubMed ID: 4272179
    [No Abstract]   [Full Text] [Related]  

  • 19. A possible ribosomal-directed regulatory system in Euglena gracilis. Carbon dioxide fixation.
    Wolfovitch R; Perl M
    Biochem J; 1972 Dec; 130(3):819-23. PubMed ID: 4198359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomics revealed the photosynthetic performance and metabolomic characteristics of Euglena gracilis under autotrophic and mixotrophic conditions.
    Gu G; Ou D; Chen Z; Gao S; Sun S; Zhao Y; Hu C; Liang X
    World J Microbiol Biotechnol; 2022 Jul; 38(9):160. PubMed ID: 35834059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.