These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8098773)

  • 1. Mutation Ala2-->Ser destabilizes intersubunit interactions in the molecular chaperone GroEL.
    Horovitz A; Bochkareva ES; Kovalenko O; Girshovich AS
    J Mol Biol; 1993 May; 231(1):58-64. PubMed ID: 8098773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of an inter-residue interaction in the chaperonin GroEL from multiple sequence alignment is confirmed by double-mutant cycle analysis.
    Horovitz A; Bochkareva ES; Yifrach O; Girshovich AS
    J Mol Biol; 1994 Apr; 238(2):133-8. PubMed ID: 7908986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a functionally important mobile domain of GroES.
    Landry SJ; Zeilstra-Ryalls J; Fayet O; Georgopoulos C; Gierasch LM
    Nature; 1993 Jul; 364(6434):255-8. PubMed ID: 8100614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196-->Ala.
    Yifrach O; Horovitz A
    J Mol Biol; 1994 Oct; 243(3):397-401. PubMed ID: 7966268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of Chromatium vinosum GroEL and GroES proteins overexpressed in Escherichia coli cells lacking the endogenous groESL operon.
    Dionisi HM; Viale AM
    Protein Expr Purif; 1998 Nov; 14(2):275-82. PubMed ID: 9790891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of chloramphenicol acetyltransferase overproduced in E. coli with wild-type and mutant GroEL.
    Kim HB; Kang C
    Biochem Int; 1991 Sep; 25(2):381-6. PubMed ID: 1686395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homologous plant and bacterial proteins chaperone oligomeric protein assembly.
    Hemmingsen SM; Woolford C; van der Vies SM; Tilly K; Dennis DT; Georgopoulos CP; Hendrix RW; Ellis RJ
    Nature; 1988 May; 333(6171):330-4. PubMed ID: 2897629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residue lysine-34 in GroES modulates allosteric transitions in GroEL.
    Kovalenko O; Yifrach O; Horovitz A
    Biochemistry; 1994 Dec; 33(50):14974-8. PubMed ID: 7999753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL.
    Lissin NM; Venyaminov SYu ; Girshovich AS
    Nature; 1990 Nov; 348(6299):339-42. PubMed ID: 1979147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperativity in ATP hydrolysis by GroEL is increased by GroES.
    Gray TE; Fersht AR
    FEBS Lett; 1991 Nov; 292(1-2):254-8. PubMed ID: 1683631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.
    Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide-induced transition of GroEL from the high-affinity to the low-affinity state for a target protein: effects of ATP and ADP on the GroEL-affected refolding of alpha-lactalbumin.
    Makio T; Takasu-Ishikawa E; Kuwajima K
    J Mol Biol; 2001 Sep; 312(3):555-67. PubMed ID: 11563916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M domains couple the ClpB threading motor with the DnaK chaperone activity.
    Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A
    Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J
    J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetracycline/H+ antiporter was degraded rapidly in Escherichia coli cells when truncated at last transmembrane helix and this degradation was protected by overproduced GroEL/ES.
    Sato K; Sato MH; Yamaguchi A; Yoshida M
    Biochem Biophys Res Commun; 1994 Jul; 202(1):258-64. PubMed ID: 7913602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL.
    Yifrach O; Horovitz A
    Biochemistry; 1995 Apr; 34(16):5303-8. PubMed ID: 7727391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric control by ATP of non-folded protein binding to GroEL.
    Yifrach O; Horovitz A
    J Mol Biol; 1996 Jan; 255(3):356-61. PubMed ID: 8568880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL.
    Rye HS; Burston SG; Fenton WA; Beechem JM; Xu Z; Sigler PB; Horwich AL
    Nature; 1997 Aug; 388(6644):792-8. PubMed ID: 9285593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.