These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8099498)

  • 21. Structure and function in rhodopsin: the role of asparagine-linked glycosylation.
    Kaushal S; Ridge KD; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4024-8. PubMed ID: 8171029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycosylation and palmitoylation are not required for the formation of the X-linked cone opsin visual pigments.
    Ostrer H; Pullarkat RK; Kazmi MA
    Mol Vis; 1998 Dec; 4():28. PubMed ID: 9852167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro expression of bovine opsin using recombinant baculovirus: the role of glutamic acid (134) in opsin biosynthesis and glycosylation.
    Jansen JJ; Mulder WR; De Caluwé GL; Vlak JM; De Grip WJ
    Biochim Biophys Acta; 1991 May; 1089(1):68-76. PubMed ID: 1673866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activating mutations of rhodopsin and other G protein-coupled receptors.
    Rao VR; Oprian DD
    Annu Rev Biophys Biomol Struct; 1996; 25():287-314. PubMed ID: 8800472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of opsin activity by all-trans-retinal.
    Surya A; Knox BE
    Exp Eye Res; 1998 May; 66(5):599-603. PubMed ID: 9628807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments.
    Sato K; Yamashita T; Ohuchi H; Shichida Y
    Biochemistry; 2011 Dec; 50(48):10484-90. PubMed ID: 22066464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Palmitoylation of bovine opsin and its cysteine mutants in COS cells.
    Karnik SS; Ridge KD; Bhattacharya S; Khorana HG
    Proc Natl Acad Sci U S A; 1993 Jan; 90(1):40-4. PubMed ID: 8419942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences in the pharmacological activation of visual opsins.
    Isayama T; Chen Y; Kono M; Degrip WJ; Ma JX; Crouch RK; Makino CL
    Vis Neurosci; 2006; 23(6):899-908. PubMed ID: 17266782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutation of a conserved proline disrupts the retinal-binding pocket of the X-linked cone opsins.
    Ostrer H; Kazmi MA
    Mol Vis; 1997 Dec; 3():16. PubMed ID: 9479007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix.
    Lin SW; Sakmar TP; Franke RR; Khorana HG; Mathies RA
    Biochemistry; 1992 Jun; 31(22):5105-11. PubMed ID: 1351402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural comparison of metarhodopsin II, metarhodopsin III, and opsin based on kinetic analysis of Fourier transform infrared difference spectra.
    Klinger AL; Braiman MS
    Biophys J; 1992 Nov; 63(5):1244-55. PubMed ID: 1477276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin.
    Sakmar TP; Franke RR; Khorana HG
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8309-13. PubMed ID: 2573063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and characterization of rod opsin cDNA from the Old World monkey, Macaca fascicularis.
    Nickells RW; Burgoyne CF; Quigley HA; Zack DJ
    Invest Ophthalmol Vis Sci; 1995 Jan; 36(1):72-82. PubMed ID: 7822161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH dependence of photolysis intermediates in the photoactivation of rhodopsin mutant E113Q.
    Lewis JW; Szundi I; Fu WY; Sakmar TP; Kliger DS
    Biochemistry; 2000 Jan; 39(3):599-606. PubMed ID: 10642185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale production of a disulfide-stabilized constitutively active mutant opsin.
    Min KC; Jin Y; Hendrickson WA
    Protein Expr Purif; 2011 Feb; 75(2):236-41. PubMed ID: 20858543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness.
    Rao VR; Cohen GB; Oprian DD
    Nature; 1994 Feb; 367(6464):639-42. PubMed ID: 8107847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion.
    Babu KR; Dukkipati A; Birge RR; Knox BE
    Biochemistry; 2001 Nov; 40(46):13760-6. PubMed ID: 11705364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group.
    Fahmy K; Sakmar TP
    Biochemistry; 1993 Jul; 32(28):7229-36. PubMed ID: 8343512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA; Fahmy K; Sakmar TP
    Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. All-trans-retinal forms a visible-absorbing pigment with human rod opsin.
    Brueggemann LI; Sullivan JM
    Biochemistry; 2001 Apr; 40(14):4446-53. PubMed ID: 11284701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.