These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 8099711)
1. NTGLO: a tobacco homologue of the GLOBOSA floral homeotic gene of Antirrhinum majus: cDNA sequence and expression pattern. Hansen G; Estruch JJ; Sommer H; Spena A Mol Gen Genet; 1993 May; 239(1-2):310-2. PubMed ID: 8099711 [TBL] [Abstract][Full Text] [Related]
2. Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes. Davies B; Di Rosa A; Eneva T; Saedler H; Sommer H Plant J; 1996 Oct; 10(4):663-77. PubMed ID: 8893543 [TBL] [Abstract][Full Text] [Related]
3. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. Tröbner W; Ramirez L; Motte P; Hue I; Huijser P; Lönnig WE; Saedler H; Sommer H; Schwarz-Sommer Z EMBO J; 1992 Dec; 11(13):4693-704. PubMed ID: 1361166 [TBL] [Abstract][Full Text] [Related]
4. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Münster T; Wingen LU; Faigl W; Werth S; Saedler H; Theissen G Gene; 2001 Jan; 262(1-2):1-13. PubMed ID: 11179662 [TBL] [Abstract][Full Text] [Related]
5. Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus. Okamoto H; Yano A; Shiraishi H; Okada K; Shimura Y Plant Mol Biol; 1994 Oct; 26(1):465-72. PubMed ID: 7948893 [TBL] [Abstract][Full Text] [Related]
6. Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Kempin SA; Mandel MA; Yanofsky MF Plant Physiol; 1993 Dec; 103(4):1041-6. PubMed ID: 7507255 [TBL] [Abstract][Full Text] [Related]
7. Floral development and expression of floral homeotic genes are influenced by cytokinins. Estruch JJ; Granell A; Hansen G; Prinsen E; Redig P; Van Onckelen H; Schwarz-Sommer Z; Sommer H; Spena A Plant J; 1993 Aug; 4(2):379-84. PubMed ID: 8106083 [TBL] [Abstract][Full Text] [Related]
8. Multiple interactions amongst floral homeotic MADS box proteins. Davies B; Egea-Cortines M; de Andrade Silva E; Saedler H; Sommer H EMBO J; 1996 Aug; 15(16):4330-43. PubMed ID: 8861961 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Zachgo S; Silva Ede A; Motte P; Tröbner W; Saedler H; Schwarz-Sommer Z Development; 1995 Sep; 121(9):2861-75. PubMed ID: 7555713 [TBL] [Abstract][Full Text] [Related]
10. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. Sommer H; Beltrán JP; Huijser P; Pape H; Lönnig WE; Saedler H; Schwarz-Sommer Z EMBO J; 1990 Mar; 9(3):605-13. PubMed ID: 1968830 [TBL] [Abstract][Full Text] [Related]
11. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. Kalivas A; Pasentsis K; Polidoros AN; Tsaftaris AS DNA Seq; 2007 Apr; 18(2):120-30. PubMed ID: 17364823 [TBL] [Abstract][Full Text] [Related]
12. Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis. Angenent GC; Busscher M; Franken J; Dons HJ; van Tunen AJ Plant Cell; 1995 May; 7(5):507-16. PubMed ID: 7780304 [TBL] [Abstract][Full Text] [Related]
13. A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Mouradov A; Hamdorf B; Teasdale RD; Kim JT; Winter KU; Theissen G Dev Genet; 1999 Sep; 25(3):245-52. PubMed ID: 10528265 [TBL] [Abstract][Full Text] [Related]
14. A ubiquitously expressed MADS-box gene from Nicotiana tabacum. Mandel T; Lutziger I; Kuhlemeier C Plant Mol Biol; 1994 May; 25(2):319-21. PubMed ID: 8018879 [TBL] [Abstract][Full Text] [Related]
15. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Bradley D; Carpenter R; Sommer H; Hartley N; Coen E Cell; 1993 Jan; 72(1):85-95. PubMed ID: 8093684 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Kang HG; Noh YS; Chung YY; Costa MA; An K; An G Plant Mol Biol; 1995 Oct; 29(1):1-10. PubMed ID: 7579155 [TBL] [Abstract][Full Text] [Related]
17. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Pnueli L; Abu-Abeid M; Zamir D; Nacken W; Schwarz-Sommer Z; Lifschitz E Plant J; 1991 Sep; 1(2):255-66. PubMed ID: 1688249 [TBL] [Abstract][Full Text] [Related]
18. Defective cell proliferation in the floral meristem of alloplasmic plants of Nicotiana tabacum leads to abnormal floral organ development and male sterility. Farbos I; Mouras A; Bereterbide A; Glimelius K Plant J; 2001 Apr; 26(2):131-42. PubMed ID: 11389755 [TBL] [Abstract][Full Text] [Related]
19. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Schmidt RJ; Veit B; Mandel MA; Mena M; Hake S; Yanofsky MF Plant Cell; 1993 Jul; 5(7):729-37. PubMed ID: 8103379 [TBL] [Abstract][Full Text] [Related]
20. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]