These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 8099777)
1. The role of hypothalamic nuclei in the dopaminergic control of background adaptation in Xenopus laevis. Tuinhof R; de Rijk EP; Wismans RG; Smeets WJ; Roubos EW Ann N Y Acad Sci; 1993 May; 680():486-8. PubMed ID: 8099777 [No Abstract] [Full Text] [Related]
2. Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation. Tuinhof R; Laurent FY; Ebbers RG; Smeets WJ; Van Riel MC; Roubos EW Neuroscience; 1993 Aug; 55(3):667-75. PubMed ID: 8413929 [TBL] [Abstract][Full Text] [Related]
3. Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study. Tuinhof R; Artero C; Fasolo A; Franzoni MF; Ten Donkelaar HJ; Wismans PG; Roubos EW Neuroscience; 1994 Jul; 61(2):411-20. PubMed ID: 7526268 [TBL] [Abstract][Full Text] [Related]
4. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis. Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930 [TBL] [Abstract][Full Text] [Related]
5. Central control of melanotrope cells of Xenopus laevis. Tuinhof R; González A; Smeets WJ; Scheenen WJ; Roubos EW Eur J Morphol; 1994 Aug; 32(2-4):307-10. PubMed ID: 7803185 [TBL] [Abstract][Full Text] [Related]
6. Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study. Ubink R; Tuinhof R; Roubos EW J Comp Neurol; 1998 Jul; 397(1):60-8. PubMed ID: 9671279 [TBL] [Abstract][Full Text] [Related]
7. Forebrain differentiation and axonogenesis in amphibians: I. Differentiation of the suprachiasmatic nucleus in relation to background adaptation behavior. Eagleson GW; Ubink R; Jenks BG; Roubos EW Brain Behav Evol; 1998; 52(1):23-36. PubMed ID: 9667806 [TBL] [Abstract][Full Text] [Related]
8. Neuropeptide Y-like immunoreactive neurons in the suprachiasmatic-subparaventricular region in the hedgehog-tenrec. Künzle H; Unger JW Brain Res; 1992 Apr; 576(2):332-6. PubMed ID: 1515927 [TBL] [Abstract][Full Text] [Related]
9. Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation. Kramer BM; Welting J; Berghs CA; Jenks BG; Roubos EW J Comp Neurol; 2001 Apr; 432(3):346-55. PubMed ID: 11246212 [TBL] [Abstract][Full Text] [Related]
10. Synaptic inputs of neuropeptide Y-immunoreactive noradrenergic nerve terminals to neurons in the nucleus preopticus medianus which project to the paraventricular nucleus of the hypothalamus of the rat: a combined immunohistochemical and retrograde tracing method. Kawano H; Masuko S Brain Res; 1993 Jan; 600(1):74-80. PubMed ID: 7678536 [TBL] [Abstract][Full Text] [Related]
11. Continuous illumination through larval development suppresses dopamine synthesis in the suprachiasmatic nucleus, causing activation of α-MSH synthesis in the pituitary and abnormal metamorphic skin pigmentation in flounder. Itoh K; Washio Y; Fujinami Y; Shimizu D; Uji S; Yokoi H; Suzuki T Gen Comp Endocrinol; 2012 Apr; 176(2):215-21. PubMed ID: 22326352 [TBL] [Abstract][Full Text] [Related]
12. The significance of multiple inhibitory mechanisms converging on the melanotrope cell of Xenopus laevis. Jenks B; Buzzi M; Dotman C; De Koning H; Scheenen W; Lieste J; Leenders H; Cruijsen P; Roubos E Ann N Y Acad Sci; 1998 May; 839():229-34. PubMed ID: 9629157 [No Abstract] [Full Text] [Related]
13. Hypothalamic Paraventricular and Arcuate Nuclei Contribute to Elevated Sympathetic Nerve Activity in Pregnant Rats: Roles of Neuropeptide Y and α-Melanocyte-Stimulating Hormone. Shi Z; Cassaglia PA; Gotthardt LC; Brooks VL Hypertension; 2015 Dec; 66(6):1191-8. PubMed ID: 26483343 [TBL] [Abstract][Full Text] [Related]
15. Contexts for dopamine specification by calcium spike activity in the CNS. Velázquez-Ulloa NA; Spitzer NC; Dulcis D J Neurosci; 2011 Jan; 31(1):78-88. PubMed ID: 21209192 [TBL] [Abstract][Full Text] [Related]
16. Diurnal rhythm of neuropeptide Y-like immunoreactivity in the suprachiasmatic, arcuate and paraventricular nuclei and other hypothalamic sites. Jhanwar-Uniyal M; Beck B; Burlet C; Leibowitz SF Brain Res; 1990 Dec; 536(1-2):331-4. PubMed ID: 2085760 [TBL] [Abstract][Full Text] [Related]
17. Agouti-related protein containing nerve terminals innervate thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Légrádi G; Lechan RM Endocrinology; 1999 Aug; 140(8):3643-52. PubMed ID: 10433222 [TBL] [Abstract][Full Text] [Related]
18. Demonstration of coexisting catecholamine (dopamine), amino acid (GABA), and peptide (NPY) involved in inhibition of melanotrope cell activity in Xenopus laevis: a quantitative ultrastructural, freeze-substitution immunocytochemical study. de Rijk EP; van Strien FJ; Roubos EW J Neurosci; 1992 Mar; 12(3):864-71. PubMed ID: 1312137 [TBL] [Abstract][Full Text] [Related]