BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8099842)

  • 1. New mdx mutation disrupts expression of muscle and nonmuscle isoforms of dystrophin.
    Cox GA; Phelps SF; Chapman VM; Chamberlain JS
    Nat Genet; 1993 May; 4(1):87-93. PubMed ID: 8099842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplex in situ hybridization within a single transcript: RNAscope reveals dystrophin mRNA dynamics.
    Hildyard JCW; Rawson F; Wells DJ; Piercy RJ
    PLoS One; 2020; 15(9):e0239467. PubMed ID: 32970731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges and Considerations of Preclinical Development for iPSC-Based Myogenic Cell Therapy.
    Sun C; Serra C; Kalicharan BH; Harding J; Rao M
    Cells; 2024 Mar; 13(7):. PubMed ID: 38607035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The BALB/c.mdx62 mouse exhibits a dystrophic muscle pathology and is a model of Duchenne muscular dystrophy.
    Swiderski K; Chan AS; Herold MJ; Kueh AJ; Chung JD; Hardee JP; Trieu J; Chee A; Naim T; Gregorevic P; Lynch GS
    Dis Model Mech; 2024 Apr; 17(4):. PubMed ID: 38602028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal models for researching approaches to therapy of Duchenne muscular dystrophy.
    Zaynitdinova MI; Lavrov AV; Smirnikhina SA
    Transgenic Res; 2021 Dec; 30(6):709-725. PubMed ID: 34409525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and biomechanical characteristics of dystrophin-deficient mdx
    Karnam S; Skiba NP; Rao PV
    Biochim Biophys Acta Mol Basis Dis; 2021 Jan; 1867(1):165998. PubMed ID: 33127476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies.
    Lim KRQ; Sheri N; Nguyen Q; Yokota T
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32650403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse models for muscular dystrophies: an overview.
    van Putten M; Lloyd EM; de Greef JC; Raz V; Willmann R; Grounds MD
    Dis Model Mech; 2020 Feb; 13(2):. PubMed ID: 32224495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular Dystrophy Mice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate.
    Kolwicz SC; Hall JK; Moussavi-Harami F; Chen X; Hauschka SD; Chamberlain JS; Regnier M; Odom GL
    JACC Basic Transl Sci; 2019 Nov; 4(7):778-791. PubMed ID: 31998848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy.
    Naidoo M; Anthony K
    Mol Neurobiol; 2020 Mar; 57(3):1748-1767. PubMed ID: 31836945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of qPCR reference genes suitable for normalizing gene expression in the mdx mouse model of Duchenne muscular dystrophy.
    Hildyard JCW; Finch AM; Wells DJ
    PLoS One; 2019; 14(1):e0211384. PubMed ID: 30699165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humanizing the mdx mouse model of DMD: the long and the short of it.
    Yucel N; Chang AC; Day JW; Rosenthal N; Blau HM
    NPJ Regen Med; 2018; 3():4. PubMed ID: 29479480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting muscle stem cell intrinsic defects to treat Duchenne muscular dystrophy.
    Dumont NA; Rudnicki MA
    NPJ Regen Med; 2016; 1():16006-. PubMed ID: 29188075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniform low-level dystrophin expression in the heart partially preserved cardiac function in an aged mouse model of Duchenne cardiomyopathy.
    Wasala NB; Yue Y; Vance J; Duan D
    J Mol Cell Cardiol; 2017 Jan; 102():45-52. PubMed ID: 27908661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy.
    Allen DG; Whitehead NP; Froehner SC
    Physiol Rev; 2016 Jan; 96(1):253-305. PubMed ID: 26676145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porcine models of muscular dystrophy.
    Selsby JT; Ross JW; Nonneman D; Hollinger K
    ILAR J; 2015; 56(1):116-26. PubMed ID: 25991703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy.
    McGreevy JW; Hakim CH; McIntosh MA; Duan D
    Dis Model Mech; 2015 Mar; 8(3):195-213. PubMed ID: 25740330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells.
    Arnett AL; Konieczny P; Ramos JN; Hall J; Odom G; Yablonka-Reuveni Z; Chamberlain JR; Chamberlain JS
    Mol Ther Methods Clin Dev; 2014; 1():14038-. PubMed ID: 25580445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What do mouse models of muscular dystrophy tell us about the DAPC and its components?
    Whitmore C; Morgan J
    Int J Exp Pathol; 2014 Dec; 95(6):365-77. PubMed ID: 25270874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A marginal level of dystrophin partially ameliorates hindlimb muscle passive mechanical properties in dystrophin-null mice.
    Hakim CH; Duan D
    Muscle Nerve; 2012 Dec; 46(6):948-50. PubMed ID: 23225385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.