BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8100472)

  • 1. Two populations of calbindin D28k-immunoreactive neurones in the striatum of the rat.
    Bennett BD; Bolam JP
    Brain Res; 1993 May; 610(2):305-10. PubMed ID: 8100472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of calretinin-immunoreactive structures in the striatum of the rat.
    Bennett BD; Bolam JP
    Brain Res; 1993 Apr; 609(1-2):137-48. PubMed ID: 8508297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calbindin-D28k immunoreactive neurons form two populations in the rat nucleus accumbens: a compartmental study.
    Hussain Z; Totterdell S
    Brain Res; 1994 Sep; 656(1):191-8. PubMed ID: 7804837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential localization of NADPH-diaphorase and calbindin-D28k within the cholinergic neurons of the basal forebrain, striatum and brainstem in the rat, monkey, baboon and human.
    Geula C; Schatz CR; Mesulam MM
    Neuroscience; 1993 May; 54(2):461-76. PubMed ID: 8336832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex.
    Sorvari H; Soininen H; Pitkänen A
    Neuroscience; 1996 Nov; 75(2):421-43. PubMed ID: 8931007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adrenergic alpha2C-receptors reside in rat striatal GABAergic projection neurons: comparison of radioligand binding and immunohistochemistry.
    Holmberg M; Scheinin M; Kurose H; Miettinen R
    Neuroscience; 1999; 93(4):1323-33. PubMed ID: 10501456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human striatum: chemoarchitecture of the caudate nucleus, putamen and ventral striatum in health and Alzheimer's disease.
    Selden N; Geula C; Hersh L; Mesulam MM
    Neuroscience; 1994 Jun; 60(3):621-36. PubMed ID: 7523983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunohistochemical evidence for the presence of calbindin containing neurones in the myenteric plexus of the guinea-pig stomach.
    Reiche D; Pfannkuche H; Michel K; Hoppe S; Schemann M
    Neurosci Lett; 1999 Jul; 270(2):71-4. PubMed ID: 10462100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling.
    DiFiglia M; Christakos S; Aronin N
    J Comp Neurol; 1989 Jan; 279(4):653-65. PubMed ID: 2918090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term survival of GABA-, enkephalin-, NADPH-diaphorase- and calbindin-d28k-containing neurons in fetal striatal grafts.
    Roberts RC; DiFiglia M
    Brain Res; 1990 Nov; 532(1-2):151-9. PubMed ID: 1980852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colocalization of neuropeptides with calbindin D28k and NADPH diaphorase in the enteric nerve plexuses of normal human ileum.
    Dhatt N; Buchan AM
    Gastroenterology; 1994 Sep; 107(3):680-90. PubMed ID: 7521306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient calbindin-D28k-positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex.
    Liu FC; Graybiel AM
    J Neurosci; 1992 Feb; 12(2):674-90. PubMed ID: 1740695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurofilament M and calbindin D28k are present in mutually exclusive subpopulations of enteric neurons in the rat submucous plexus.
    Buchan AM
    Brain Res; 1991 Jan; 538(1):171-5. PubMed ID: 1708305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased calbindin-D28k immunoreactivity in aged rat sympathetic pelvic ganglionic neurons.
    Corns RA; Boolaky UV; Santer RM
    Neurosci Lett; 2000 Oct; 292(2):91-4. PubMed ID: 10998556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid.
    Beal MF; Brouillet E; Jenkins BG; Ferrante RJ; Kowall NW; Miller JM; Storey E; Srivastava R; Rosen BR; Hyman BT
    J Neurosci; 1993 Oct; 13(10):4181-92. PubMed ID: 7692009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic morphine increases calbindin D28k in rat striatum: possible NMDA receptor involvement.
    Garcia MM; Harlan RE
    Neuroreport; 1993 Oct; 5(1):65-8. PubMed ID: 8280862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution and morphology of calbindin D28K- and calretinin-immunoreactive neurons in the visual cortex of mouse.
    Park HJ; Kong JH; Kang YS; Park WM; Jeong SA; Park SM; Lim JK; Jeon CJ
    Mol Cells; 2002 Aug; 14(1):143-9. PubMed ID: 12243344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calbindin-D28k in nerve cell nuclei.
    German DC; Ng MC; Liang CL; McMahon A; Iacopino AM
    Neuroscience; 1997 Dec; 81(3):735-43. PubMed ID: 9316025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alz-50 immunohistochemistry in the normal sheep striatum: a light and electron microscope study.
    Nelson PT; Marton L; Saper CB
    Brain Res; 1993 Jan; 600(2):285-97. PubMed ID: 8094642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential sensitivity of calbindin and parvalbumin immunoreactive cells in the striatum to excitotoxins.
    Waldvogel HJ; Faull RL; Williams MN; Dragunow M
    Brain Res; 1991 Apr; 546(2):329-35. PubMed ID: 1829975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.