BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8101966)

  • 1. Amino acid substitutions at position 312 in the seventh hydrophobic segment of the beta 2-adrenergic receptor modify ligand-binding specificity.
    Suryanarayana S; Kobilka BK
    Mol Pharmacol; 1993 Jul; 44(1):111-4. PubMed ID: 8101966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The binding of propranolol at 5-hydroxytryptamine1D beta T355N mutant receptors may involve formation of two hydrogen bonds to asparagine.
    Glennon RA; Dukat M; Westkaemper RB; Ismaiel AM; Izzarelli DG; Parker EM
    Mol Pharmacol; 1996 Jan; 49(1):198-206. PubMed ID: 8569707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a single amino acid residue responsible for the binding of a class of beta-adrenergic receptor antagonists to 5-hydroxytryptamine1A receptors.
    Guan XM; Peroutka SJ; Kobilka BK
    Mol Pharmacol; 1992 Apr; 41(4):695-8. PubMed ID: 1349154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of critical extracellular loop residues involved in alpha 1-adrenergic receptor subtype-selective antagonist binding.
    Zhao MM; Hwa J; Perez DM
    Mol Pharmacol; 1996 Nov; 50(5):1118-26. PubMed ID: 8913343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenylalanine in the second membrane-spanning domain of alpha 1A-adrenergic receptor determines subtype selectivity of dihydropyridine antagonists.
    Hamaguchi N; True TA; Saussy DL; Jeffs PW
    Biochemistry; 1996 Nov; 35(45):14312-7. PubMed ID: 8916917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the binding affinity of some newly synthesized phenylethanolamine and phenoxypropanolamine compounds at recombinant human beta- and alpha1-adrenoceptor subtypes.
    Ahmed M; Hanaoka Y; Kiso T; Kakita T; Ohtsubo Y; Muramatsu I; Nagatomo T
    J Pharm Pharmacol; 2005 Jan; 57(1):75-81. PubMed ID: 15638996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent and selective human beta(3)-adrenergic receptor antagonists.
    Candelore MR; Deng L; Tota L; Guan XM; Amend A; Liu Y; Newbold R; Cascieri MA; Weber AE
    J Pharmacol Exp Ther; 1999 Aug; 290(2):649-55. PubMed ID: 10411574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to docking in the beta 2-adrenergic receptor that exploits the domain structure of G-protein-coupled receptors.
    Gouldson PR; Snell CR; Reynolds CA
    J Med Chem; 1997 Nov; 40(24):3871-86. PubMed ID: 9397168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of residues important for ligand binding to the human 5-hydroxytryptamine1A serotonin receptor.
    Chanda PK; Minchin MC; Davis AR; Greenberg L; Reilly Y; McGregor WH; Bhat R; Lubeck MD; Mizutani S; Hung PP
    Mol Pharmacol; 1993 Apr; 43(4):516-20. PubMed ID: 8474430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding and binding integrity of variants of a prototype ligand-binding module from the LDL receptor possessing multiple alanine substitutions.
    Abdul-Aziz D; Fisher C; Beglova N; Blacklow SC
    Biochemistry; 2005 Apr; 44(13):5075-85. PubMed ID: 15794645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model structures of the N-methyl-D-aspartate receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands.
    Moretti L; Pentikäinen OT; Settimo L; Johnson MS
    J Struct Biol; 2004 Mar; 145(3):205-15. PubMed ID: 14960371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insight into the specific interaction between murine SHPS-1/SIRP alpha and its ligand CD47.
    Nakaishi A; Hirose M; Yoshimura M; Oneyama C; Saito K; Kuki N; Matsuda M; Honma N; Ohnishi H; Matozaki T; Okada M; Nakagawa A
    J Mol Biol; 2008 Jan; 375(3):650-60. PubMed ID: 18045614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function.
    Rosenbaum DM; Cherezov V; Hanson MA; Rasmussen SG; Thian FS; Kobilka TS; Choi HJ; Yao XJ; Weis WI; Stevens RC; Kobilka BK
    Science; 2007 Nov; 318(5854):1266-73. PubMed ID: 17962519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution.
    Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC
    J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of the adrenergic beta-2 receptor and binding sites for agonist and antagonist.
    Lewell XQ
    Drug Des Discov; 1992; 9(1):29-48. PubMed ID: 1360841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of a lysine 331 counterion on the pK(a) of aspartic acid 125: evidence for a salt-bridge interaction and role in alpha(1b)-adrenergic receptor activation.
    Porter JE; Perez DM
    J Pharmacol Exp Ther; 2000 Jan; 292(1):440-8. PubMed ID: 10604981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus.
    Almaula N; Ebersole BJ; Ballesteros JA; Weinstein H; Sealfon SC
    Mol Pharmacol; 1996 Jul; 50(1):34-42. PubMed ID: 8700116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis of important amino acid reveals unconventional homologous internalization of beta(1)-adrenergic receptor.
    Hossain M; Rashid M; Bhuiyan MA; Nakamura T; Ozaki M; Nagatomo T
    Life Sci; 2009 Aug; 85(7-8):339-44. PubMed ID: 19580817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of constitutive 5-hydroxytryptamine(1B) receptor by a series of mutations in the BBXXB motif: positioning of the third intracellular loop distal junction and its G(o)alpha protein interactions.
    Pauwels PJ; Gouble A; Wurch T
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):435-42. PubMed ID: 10510311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine residues are involved in structure and function of melanocortin 1 receptor: Substitution of a cysteine residue in transmembrane segment two converts an agonist to antagonist.
    Frändberg PA; Doufexis M; Kapas S; Chhajlani V
    Biochem Biophys Res Commun; 2001 Mar; 281(4):851-7. PubMed ID: 11237737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.