These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8102258)

  • 1. Chronic hypoxia in vitro increases volume of dissociated carotid body chemoreceptors.
    Mills L; Nurse C
    Neuroreport; 1993 Jun; 4(6):619-22. PubMed ID: 8102258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity in cultured carotid body chemoreceptors: environmental modulation of GAP-43 and neurofilament.
    Jackson A; Nurse C
    J Neurobiol; 1995 Apr; 26(4):485-96. PubMed ID: 7602313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hypoxia on cultured chemoreceptors of the rat carotid body: DNA synthesis and mitotic activity in glomus cells.
    Nurse CA; Vollmer C
    Adv Exp Med Biol; 1993; 337():79-84. PubMed ID: 7906489
    [No Abstract]   [Full Text] [Related]  

  • 4. Short-term hypoxia increases tyrosine hydroxylase immunoreactivity in rat carotid body.
    Kato K; Yamaguchi-Yamada M; Yamamoto Y
    J Histochem Cytochem; 2010 Sep; 58(9):839-46. PubMed ID: 20530461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia and N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate, but not nerve growth factor, induce Na+ channels and hypertrophy in chromaffin-like arterial chemoreceptors.
    Stea A; Jackson A; Nurse CA
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9469-73. PubMed ID: 1329096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopaminergic properties of cultured rat carotid body chemoreceptors grown in normoxic and hypoxic environments.
    Jackson A; Nurse C
    J Neurochem; 1997 Aug; 69(2):645-54. PubMed ID: 9231723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic FGF localization in rat carotid body: paracrine role in O2 -chemoreceptor survival.
    Paciga M; Nurse CA
    Neuroreport; 2001 Oct; 12(15):3287-91. PubMed ID: 11711872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of basic FGF and oxygen in control of proliferation, survival, and neuronal differentiation in carotid body chromaffin cells.
    Nurse CA; Vollmer C
    Dev Biol; 1997 Apr; 184(2):197-206. PubMed ID: 9133430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Culture of arterial chemoreceptor cells from adult cats in defined medium.
    Shirahata M; Schofield B; Chin BY; Guilarte TR
    Brain Res; 1994 Sep; 658(1-2):60-6. PubMed ID: 7834356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of acetylcholine receptors and dopamine transporter in regulation of extracellular dopamine in rat carotid body cultures grown in chronic hypoxia or nicotine.
    Jackson A; Nurse CA
    J Neurochem; 1998 Feb; 70(2):653-62. PubMed ID: 9453559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of putative O2 chemoreceptor cells from the gills of channel catfish (Ictalurus punctatus).
    Burleson ML; Mercer SE; Wilk-Blaszczak MA
    Brain Res; 2006 May; 1092(1):100-7. PubMed ID: 16690040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal immunofluorescence study of rat aortic body chemoreceptors and associated neurons in situ and in vitro.
    Piskuric NA; Vollmer C; Nurse CA
    J Comp Neurol; 2011 Apr; 519(5):856-73. PubMed ID: 21280041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors.
    Zhang M; Zhong H; Vollmer C; Nurse CA
    J Physiol; 2000 May; 525 Pt 1(Pt 1):143-58. PubMed ID: 10811733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term hypoxia increases phosphorylated tyrosine hydroxylase at Ser31 and Ser40 in rat carotid body.
    Kato K; Yamamoto Y
    Respir Physiol Neurobiol; 2013 Feb; 185(3):543-6. PubMed ID: 23153692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in HIF transcription factor in carotid body: relevance for O2 sensing by chemoreceptors.
    Roux JC; Brismar H; Aperia A; Lagercrantz H
    Pediatr Res; 2005 Jul; 58(1):53-7. PubMed ID: 15879294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synapse formation and hypoxic signalling in co-cultures of rat petrosal neurones and carotid body type 1 cells.
    Zhong H; Zhang M; Nurse CA
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):599-612. PubMed ID: 9379414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of ET-1 in hypoxia-induced mitosis of cultured rat carotid body chemoreceptors.
    Paciga M; Vollmer C; Nurse C
    Neuroreport; 1999 Dec; 10(18):3739-44. PubMed ID: 10716201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental changes in intracellular Ca2+ response of carotid chemoreceptor cells to hypoxia.
    Sterni LM; Bamford OS; Tomares SM; Montrose MH; Carroll JL
    Am J Physiol; 1995 May; 268(5 Pt 1):L801-8. PubMed ID: 7762681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carotid body adaptation to hypoxia: cellular and molecular mechanisms in vitro.
    Nurse CA
    Biol Signals; 1995; 4(5):286-91. PubMed ID: 8704829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of prolonged hypobaric hypoxia on carotid nerve endings and glomus cells. Changes in intercellular coupling.
    Jiang RG; Eyzaguirre C
    Brain Res; 2006 Mar; 1076(1):198-208. PubMed ID: 16472784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.