These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 8102367)
1. Expression and characterization of the N-terminal domain of an oleosin protein from sunflower. Li M; Keddie JS; Smith LJ; Clark DC; Murphy DJ J Biol Chem; 1993 Aug; 268(23):17504-12. PubMed ID: 8102367 [TBL] [Abstract][Full Text] [Related]
2. Characterization and modelling of the hydrophobic domain of a sunflower oleosin. Alexander LG; Sessions RB; Clarke AR; Tatham AS; Shewry PR; Napier JA Planta; 2002 Feb; 214(4):546-51. PubMed ID: 11925038 [TBL] [Abstract][Full Text] [Related]
3. Secondary structures of a new class of lipid body proteins from oilseeds. Li M; Smith LJ; Clark DC; Wilson R; Murphy DJ J Biol Chem; 1992 Apr; 267(12):8245-53. PubMed ID: 1569078 [TBL] [Abstract][Full Text] [Related]
4. Purification and structural characterization of the central hydrophobic domain of oleosin. Li M; Murphy DJ; Lee KH; Wilson R; Smith LJ; Clark DC; Sung JY J Biol Chem; 2002 Oct; 277(40):37888-95. PubMed ID: 12124381 [TBL] [Abstract][Full Text] [Related]
5. Cloning, expression and isoform classification of a minor oleosin in sesame oil bodies. Chen JC; Lin RH; Huang HC; Tzen JT J Biochem; 1997 Oct; 122(4):819-24. PubMed ID: 9399587 [TBL] [Abstract][Full Text] [Related]
6. Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Lacey DJ; Wellner N; Beaudoin F; Napier JA; Shewry PR Biochem J; 1998 Sep; 334 ( Pt 2)(Pt 2):469-77. PubMed ID: 9716507 [TBL] [Abstract][Full Text] [Related]
7. A class of amphipathic proteins associated with lipid storage bodies in plants. Possible similarities with animal serum apolipoproteins. Murphy DJ; Keen JN; O'Sullivan JN; Au DM; Edwards EW; Jackson PJ; Cummins I; Gibbons T; Shaw CH; Ryan AJ Biochim Biophys Acta; 1991 Jan; 1088(1):86-94. PubMed ID: 1989697 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the charged components and their topology on the surface of plant seed oil bodies. Tzen JT; Lie GC; Huang AH J Biol Chem; 1992 Aug; 267(22):15626-34. PubMed ID: 1639802 [TBL] [Abstract][Full Text] [Related]
9. Purification and characterization of oil-bodies (oleosomes) and oil-body boundary proteins (oleosins) from the developing cotyledons of sunflower (Helianthus annuus L.). Millichip M; Tatham AS; Jackson F; Griffiths G; Shewry PR; Stobart AK Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):333-7. PubMed ID: 8660304 [TBL] [Abstract][Full Text] [Related]
10. Purification and cloning of two high molecular mass isoforms of peanut seed oleosin encoded by cDNAs of equal sizes. Pons L; Chéry C; Mrabet N; Schohn H; Lapicque F; Guéant JL Plant Physiol Biochem; 2005 Jul; 43(7):659-68. PubMed ID: 16095908 [TBL] [Abstract][Full Text] [Related]
11. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: the central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism. Beaudoin F; Napier JA Planta; 2002 Jun; 215(2):293-303. PubMed ID: 12029479 [TBL] [Abstract][Full Text] [Related]
12. Conformational mapping of the N-terminal peptide of HIV-1 gp41 in membrane environments using (13)C-enhanced Fourier transform infrared spectroscopy. Gordon LM; Mobley PW; Pilpa R; Sherman MA; Waring AJ Biochim Biophys Acta; 2002 Feb; 1559(2):96-120. PubMed ID: 11853678 [TBL] [Abstract][Full Text] [Related]
13. Oleosin KD 18 on the surface of oil bodies in maize. Genomic and cDNA sequences and the deduced protein structure. Qu RD; Huang AH J Biol Chem; 1990 Feb; 265(4):2238-43. PubMed ID: 2298748 [TBL] [Abstract][Full Text] [Related]
14. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Tai SS; Chen MC; Peng CC; Tzen JT Biosci Biotechnol Biochem; 2002 Oct; 66(10):2146-53. PubMed ID: 12450125 [TBL] [Abstract][Full Text] [Related]
15. The role of intact oleosin for stabilization and function of oleosomes. Maurer S; Waschatko G; Schach D; Zielbauer BI; Dahl J; Weidner T; Bonn M; Vilgis TA J Phys Chem B; 2013 Nov; 117(44):13872-83. PubMed ID: 24088014 [TBL] [Abstract][Full Text] [Related]
16. Cloning, expression and purification of the luminal domain of spinach photosystem 1 subunit PsaF functional in binding to plastocyanin and with a disulfide bridge required for folding. Farkas D; Franzén LG; Hansson Ö Protein Expr Purif; 2011 Aug; 78(2):156-66. PubMed ID: 21354471 [TBL] [Abstract][Full Text] [Related]
17. Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain. Simkin AJ; Qian T; Caillet V; Michoux F; Ben Amor M; Lin C; Tanksley S; McCarthy J J Plant Physiol; 2006 May; 163(7):691-708. PubMed ID: 16442665 [TBL] [Abstract][Full Text] [Related]
18. Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants. Huang MD; Huang AH Plant Physiol; 2015 Sep; 169(1):453-70. PubMed ID: 26232488 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850 [TBL] [Abstract][Full Text] [Related]
20. Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Abell BM; Holbrook LA; Abenes M; Murphy DJ; Hills MJ; Moloney MM Plant Cell; 1997 Aug; 9(8):1481-93. PubMed ID: 9286116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]