These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8102643)

  • 41. Comparative antidopaminergic properties of thioridazine, mesoridazine and sulforidazine on the corpus striatum.
    Niedzwiecki DM; Cubeddu LX; Mailman RB
    J Pharmacol Exp Ther; 1989 Jul; 250(1):117-25. PubMed ID: 2746491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Resistance to extrapyramidal effects of opiates in rats chronically treated with SCH 23390.
    De Montis GM; Devoto P; Meloni D; Porcella A; Saba P; Tagliamonte A
    J Neurosci Res; 1989 Oct; 24(2):286-92. PubMed ID: 2531233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. D1 and D2 dopaminergic regulation of acetylcholine release from striata of freely moving rats.
    Bertorelli R; Consolo S
    J Neurochem; 1990 Jun; 54(6):2145-8. PubMed ID: 1971013
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dopamine D1 receptor stimulation increases striatal acetylcholine release in the rat.
    Damsma G; Tham CS; Robertson GS; Fibiger HC
    Eur J Pharmacol; 1990 Sep; 186(2-3):335-8. PubMed ID: 1981190
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Endogenous dopamine facilitates striatal in vivo acetylcholine release by acting on D1 receptors localized in the striatum.
    Consolo S; Girotti P; Russi G; Di Chiara G
    J Neurochem; 1992 Oct; 59(4):1555-7. PubMed ID: 1402904
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dopamine D1 receptor-stimulated release of acetylcholine in rat striatum is mediated indirectly by activation of striatal neurokinin1 receptors.
    Anderson JJ; Kuo S; Chase TN; Engber TM
    J Pharmacol Exp Ther; 1994 Jun; 269(3):1144-51. PubMed ID: 7912277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Long-term adaptive changes in striatal dopamine function in response to chronic neuroleptic intake in rats.
    Jenner P; Kerwin R; Rupniak NM; Murugaiah K; Hall MD; Fleminger S; Marsden CD
    J Neural Transm Suppl; 1983; 18():205-12. PubMed ID: 6135741
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of neuroleptics on acetylcholine concentration and choline uptake in striatum: Implications for regulation of acetylcholine metabolism.
    Sherman KA; Hanin I; Zigmond MJ
    J Pharmacol Exp Ther; 1978 Sep; 206(3):677-86. PubMed ID: 29960
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing effect of dopamine blockers on evoked acetylcholine release in rat striatal slices: a classical D-2 antagonist response?
    Boireau A; Chambry J; Dubedat P; Farges G; Carruette AM; Zundel JL; Blanchard JC
    Eur J Pharmacol; 1986 Aug; 128(1-2):93-8. PubMed ID: 2875894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo actions of clozapine and haloperidol on the turnover rate of acetylcholine in rat striatum.
    Racagni G; Cheney DL; Trabucchi M; Costa E
    J Pharmacol Exp Ther; 1976 Feb; 196(2):323-32. PubMed ID: 943521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lesions of the mesotelencephalic dopamine system enhance the effects of selective dopamine D1 and D2 receptor agonists on striatal acetylcholine release.
    Robertson GS; Hubert GW; Tham CS; Fibiger HC
    Eur J Pharmacol; 1992 Aug; 219(2):323-5. PubMed ID: 1358643
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid tolerance to neuroleptic-induced stimulation of dopamine release in freely moving rats.
    Di Chiara G; Imperato A
    J Pharmacol Exp Ther; 1985 Nov; 235(2):487-94. PubMed ID: 2865354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum.
    Ichikawa J; Dai J; O'Laughlin IA; Fowler WL; Meltzer HY
    Neuropsychopharmacology; 2002 Mar; 26(3):325-39. PubMed ID: 11850147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prenatal neuroleptic exposure and growth stunting in the rat: an in vivo and in vitro examination of sensitive periods and possible mechanisms.
    Holson RR; Webb PJ; Grafton TF; Hansen DK
    Teratology; 1994 Aug; 50(2):125-36. PubMed ID: 7801300
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of intrastriatal application of directly and indirectly acting dopamine agonists and antagonists on the in vivo release of acetylcholine measured by brain microdialysis. The importance of the post-surgery interval.
    De Boer P; Damsma G; Schram Q; Stoof JC; Zaagsma J; Westerink BH
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Feb; 345(2):144-52. PubMed ID: 1349159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in the sensitivity to apomorphine of dopamine receptors modulating dopamine and acetylcholine release after chronic treatment with bromocriptine or haloperidol.
    Cubeddu LX; Hoffmann IS; James MK; Niedzwiecki DM
    J Pharmacol Exp Ther; 1983 Sep; 226(3):680-5. PubMed ID: 6887008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of the electrically evoked release of [3H]acetylcholine in rat striatal slices: an experimental model for drugs that enhance dopaminergic neurotransmission.
    Baud P; Arbilla S; Langer SZ
    J Neurochem; 1985 Feb; 44(2):331-7. PubMed ID: 2981280
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dopamine-, NMDA- and sigma-receptor antagonists exert differential effects on basal and amphetamine-induced changes in neostriatal ascorbate and DOPAC in awake, behaving rats.
    Pierce RC; Rebec GV
    Brain Res; 1992 May; 579(1):59-66. PubMed ID: 1352478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of dopamine D1 receptors in the control of striatal acetylcholine release by endogenous dopamine.
    Acquas E; Di Chiara G
    Neurol Sci; 2001 Feb; 22(1):41-2. PubMed ID: 11487192
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Long-term treatment with chlorpromazine and haloperidol but not with sulpiride and clozapine markedly elevates neuropeptide Y-like immunoreactivity in the rat hypothalamus.
    Obuchowicz E
    Neuropeptides; 1996 Oct; 30(5):471-8. PubMed ID: 8923510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.