These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8102832)

  • 1. Mechanisms involved in the coordinate regulation of strategic enzymes of glucose metabolism.
    Sugden MC; Howard RM; Munday MR; Holness MJ
    Adv Enzyme Regul; 1993; 33():71-95. PubMed ID: 8102832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in rates of glucose utilization and regulation of glucose disposal by fast-twitch skeletal muscles in late pregnancy.
    Holness MJ; Sugden MC
    Biochem J; 1993 Jun; 292 ( Pt 2)(Pt 2):431-8. PubMed ID: 8503877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal regulation of cardiac β-oxidation and pyruvate dehydrogenase by insulin.
    Elnwasany A; Ewida HA; Menendez-Montes I; Mizerska M; Fu X; Kim CW; Horton JD; Burgess SC; Rothermel BA; Szweda PA; Szweda LI
    J Biol Chem; 2024 Jul; 300(7):107412. PubMed ID: 38796064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nutritional status on insulin sensitivity in vivo and tissue enzyme activities in the rat.
    Kruszynska YT; McCormack JG
    Biochem J; 1989 Mar; 258(3):699-707. PubMed ID: 2499304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid switch of hepatic fatty acid metabolism from oxidation to esterification during diurnal feeding of meal-fed rats correlates with changes in the properties of acetyl-CoA carboxylase, but not of carnitine palmitoyltransferase I.
    Moir AM; Zammit VA
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):241-6. PubMed ID: 8097087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition.
    Holness MJ; Sugden MC
    Biochem J; 1990 Aug; 270(1):245-9. PubMed ID: 2396984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of AMP-activated protein kinase, inhibition of pyruvate dehydrogenase activity, and redistribution of substrate partitioning mediate the acute insulin-sensitizing effects of troglitazone in skeletal muscle cells.
    Fediuc S; Pimenta AS; Gaidhu MP; Ceddia RB
    J Cell Physiol; 2008 May; 215(2):392-400. PubMed ID: 17960559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of pyruvate dehydrogenase, phosphofructo-1-kinase and acetyl-CoA carboxylase in the regulation of fatty acid synthesis in the lactating rat mammary gland during the starved to re-fed transition.
    Hagopian K; Munday MR
    Biochim Biophys Acta; 1997 Oct; 1336(3):474-84. PubMed ID: 9367175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance.
    Rahimi Y; Camporez JP; Petersen MC; Pesta D; Perry RJ; Jurczak MJ; Cline GW; Shulman GI
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16508-13. PubMed ID: 25368185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of fatty acid synthesis in lactating rat mammary gland in the fed to starved transition: asynchronous control of pyruvate dehydrogenase, phosphofructokinase and acetyl-CoA carboxylase.
    Hagopian K; Butt J; Munday MR
    Comp Biochem Physiol B; 1991; 100(3):527-34. PubMed ID: 1687675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate interactions in the short- and long-term regulation of renal glucose oxidation.
    Sugden MC; Holness MJ; Donald E; Lall H
    Metabolism; 1999 Jun; 48(6):707-15. PubMed ID: 10381144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate dehydrogenase and glycogen synthase activity at transition from fasted to fed state.
    Madar Z
    Biochem Med Metab Biol; 1989 Apr; 41(2):93-104. PubMed ID: 2497758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake.
    Small L; Brandon AE; Quek LE; Krycer JR; James DE; Turner N; Cooney GJ
    Am J Physiol Endocrinol Metab; 2018 Aug; 315(2):E258-E266. PubMed ID: 29406780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats.
    Assifi MM; Suchankova G; Constant S; Prentki M; Saha AK; Ruderman NB
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E794-800. PubMed ID: 15956049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the glucose/fatty acid cycle in the selective modulation of non-oxidative and oxidative glucose disposal by oxidative muscle in late pregnancy.
    Sugden MC; Holness MJ
    Biol Chem Hoppe Seyler; 1994 Feb; 375(2):141-7. PubMed ID: 8192859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive regulation of the pyruvate dehydrogenase complex and the carnitine palmitoyltransferase system.
    Sugden MC; Holness MJ
    FASEB J; 1994 Jan; 8(1):54-61. PubMed ID: 8299890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of flux through pyruvate dehydrogenase and pyruvate carboxylase in rat hepatocytes. Effects of fatty acids and glucagon.
    Agius L; Alberti KG
    Eur J Biochem; 1985 Nov; 152(3):699-707. PubMed ID: 3932072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of cardiac glucose metabolism in association to low birth weight: experimental evidence in lambs with left ventricular hypertrophy.
    Wang KC; Lim CH; McMillen IC; Duffield JA; Brooks DA; Morrison JL
    Metabolism; 2013 Nov; 62(11):1662-72. PubMed ID: 23928106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic potential of the mammalian pyruvate dehydrogenase kinases in the prevention of hyperglycaemia.
    Sugden MC; Holness MJ
    Curr Drug Targets Immune Endocr Metabol Disord; 2002 Jul; 2(2):151-65. PubMed ID: 12476789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase, and glycogen synthase. Evidence for their role in oxidative and nonoxidative glucose metabolism.
    Mandarino LJ; Wright KS; Verity LS; Nichols J; Bell JM; Kolterman OG; Beck-Nielsen H
    J Clin Invest; 1987 Sep; 80(3):655-63. PubMed ID: 2957389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.