BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8103057)

  • 41. Adenosine triphosphate depletion reverses sodium-dependent, neuronal uptake of glutamate in rat hippocampal slices.
    Madl JE; Burgesser K
    J Neurosci; 1993 Oct; 13(10):4429-44. PubMed ID: 8105040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural activity and intracellular Ca2+ mobilization in the CA1 area of hippocampal slices from immature and mature rats during ischemia or glucose deprivation.
    Nabetani M; Okada Y; Takata T; Takada S; Nakamura H
    Brain Res; 1997 Sep; 769(1):158-62. PubMed ID: 9374284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intracellular Ca2+ mobilization by thyrotropin, carbachol, and adenosine triphosphate in dog thyroid cells.
    Rani CS; Schilling WP; Field JB
    Endocrinology; 1989 Oct; 125(4):1889-97. PubMed ID: 2791972
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study on ATP concentration changes in cytosol of individual cultured neurons during glutamate-induced deregulation of calcium homeostasis.
    Surin AM; Gorbacheva LR; Savinkova IG; Sharipov RR; Khodorov BI; Pinelis VG
    Biochemistry (Mosc); 2014 Feb; 79(2):146-57. PubMed ID: 24794730
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cerebral energy metabolism and intracellular pH during severe hypoxia and recovery: a study using 1H, 31P, and 1H [13C] nuclear magnetic resonance spectroscopy in the guinea pig cerebral cortex in vitro.
    Kauppinen RA; Williams SR
    J Neurosci Res; 1990 Jul; 26(3):356-69. PubMed ID: 2398514
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neither moderate hypoxia nor mild hypoglycaemia alone causes any significant increase in cerebral [Ca2+]i: only a combination of the two insults has this effect. A 31P and 19F NMR study.
    Badar-Goffer RS; Thatcher NM; Morris PG; Bachelard HS
    J Neurochem; 1993 Dec; 61(6):2207-14. PubMed ID: 8245972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of glucose and oxygen deprivation on phosphoinositide hydrolysis in cerebral cortex slices from neonatal rats.
    Cristòfol RM; Rodríguez-Farré E; Sanfeliu C
    Life Sci; 1996; 59(7):587-97. PubMed ID: 8761348
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hypoxia-induced dysfunction in developing rat neocortex.
    Luhmann HJ; Kral T
    J Neurophysiol; 1997 Sep; 78(3):1212-21. PubMed ID: 9310413
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iodoacetate-induced skeletal muscle contracture: changes in ADP, calcium, phosphate, and pH.
    Ruff RL; Weissman J
    Am J Physiol; 1995 Feb; 268(2 Pt 1):C317-22. PubMed ID: 7864070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Late steady increase in cytosolic Ca2+ preceding hypoxic injury in hepatocytes.
    Brecht M; Brecht C; De Groot H
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):399-402. PubMed ID: 1575684
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcium green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons.
    Rajdev S; Reynolds IJ
    Neurosci Lett; 1993 Nov; 162(1-2):149-52. PubMed ID: 7907171
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NMDA-induced increase in [Ca2+]i and 45Ca2+ uptake in acutely dissociated brain cells derived from adult rats.
    Villalba M; Martínez-Serrano A; Börner C; Blanco P; Satrústegui J
    Brain Res; 1992 Jan; 570(1-2):347-53. PubMed ID: 1352174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of adenosine in NMDA receptor modulation in the cerebral cortex of an anoxia-tolerant turtle (Chrysemys picta belli).
    Buck LT; Bickler PE
    J Exp Biol; 1995 Jul; 198(Pt 7):1621-8. PubMed ID: 7658192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isoflurane preserves adenosine triphosphate levels in anoxic isolated rat hepatocytes by stimulating glycolytic adenosine triphosphate formation.
    Matsushita M; Ohashi I; Becker GL; Pohorecki R
    Anesth Analg; 1996 Jun; 82(6):1261-7. PubMed ID: 8638802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glutamate in synaptic terminals is reduced by lack of glucose but not hypoxia in rat hippocampal slices.
    Madl JE; Royer SM
    Neuroscience; 1999; 94(2):417-30. PubMed ID: 10579205
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phospholipid metabolism and intracellular Ca2+ homeostasis in cultured rat hepatocytes intoxicated with cyanide.
    Sakaida I; Thomas AP; Farber JL
    Am J Physiol; 1992 Sep; 263(3 Pt 1):C684-90. PubMed ID: 1415517
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of tetrodotoxin and anaesthetics on brain metabolism and transport during anoxia.
    Shankar R; Quastel JH
    Biochem J; 1972 Feb; 126(4):851-67. PubMed ID: 5073238
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidative and glycolytic pathways in rat (newborn and adult) and turtle brain: role during anoxia.
    Xia Y; Jiang C; Haddad GG
    Am J Physiol; 1992 Apr; 262(4 Pt 2):R595-603. PubMed ID: 1314516
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium.
    Spivey JR; Bronk SF; Gores GJ
    J Clin Invest; 1993 Jul; 92(1):17-24. PubMed ID: 8325981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptive preservation of ATP and tolerance to hypoxia following carotid artery ligation in the immature rat.
    Hylton CM; Pesenson MA; Welsh FA
    J Cereb Blood Flow Metab; 1995 Nov; 15(6):1137-40. PubMed ID: 7593347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.