These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8103075)

  • 1. Neurochemical-clinical correlates in Huntington's disease--applications of brain banking techniques.
    Reynolds GP; Pearson SJ
    J Neural Transm Suppl; 1993; 39():207-14. PubMed ID: 8103075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cortical lesion of Huntington's disease: further neurochemical characterization, and reproduction of some of the histological and neurochemical features by N-methyl-D-aspartate lesions of rat cortex.
    Storey E; Kowall NW; Finn SF; Mazurek MF; Beal MF
    Ann Neurol; 1992 Oct; 32(4):526-34. PubMed ID: 1280937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scientific approaches to Huntington's disease.
    Sanberg PR; Coyle JT
    CRC Crit Rev Clin Neurobiol; 1984; 1(1):1-44. PubMed ID: 6100835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neostriatal and cortical quinolinate levels are increased in early grade Huntington's disease.
    Guidetti P; Luthi-Carter RE; Augood SJ; Schwarcz R
    Neurobiol Dis; 2004 Dec; 17(3):455-61. PubMed ID: 15571981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cannabinoid (CB(1)), GABA(A) and GABA(B) receptor subunit changes in the globus pallidus in Huntington's disease.
    Allen KL; Waldvogel HJ; Glass M; Faull RL
    J Chem Neuroanat; 2009 Jul; 37(4):266-81. PubMed ID: 19481011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid.
    Beal MF; Kowall NW; Ellison DW; Mazurek MF; Swartz KJ; Martin JB
    Nature; 1986 May 8-14; 321(6066):168-71. PubMed ID: 2422561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington's disease.
    Sapko MT; Guidetti P; Yu P; Tagle DA; Pellicciari R; Schwarcz R
    Exp Neurol; 2006 Jan; 197(1):31-40. PubMed ID: 16099455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurochemical findings in Huntington's chorea.
    Bird ED; Iversen LL
    Essays Neurochem Neuropharmacol; 1977; 1():177-95. PubMed ID: 152197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington's disease.
    Lastres-Becker I; Hansen HH; Berrendero F; De Miguel R; Pérez-Rosado A; Manzanares J; Ramos JA; Fernández-Ruiz J
    Synapse; 2002 Apr; 44(1):23-35. PubMed ID: 11842443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid neurotransmitter abnormalities in Huntington's disease and the quinolinic acid animal model of Huntington's disease.
    Ellison DW; Beal MF; Mazurek MF; Malloy JR; Bird ED; Martin JB
    Brain; 1987 Dec; 110 ( Pt 6)():1657-73. PubMed ID: 2892568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington's disease.
    Smith R; Klein P; Koc-Schmitz Y; Waldvogel HJ; Faull RL; Brundin P; Plomann M; Li JY
    J Neurochem; 2007 Oct; 103(1):115-23. PubMed ID: 17877635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized brain and skin proteasome inhibition in Huntington's disease.
    Seo H; Sonntag KC; Isacson O
    Ann Neurol; 2004 Sep; 56(3):319-28. PubMed ID: 15349858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III).
    Pérez-De La Cruz V; González-Cortés C; Galván-Arzate S; Medina-Campos ON; Pérez-Severiano F; Ali SF; Pedraza-Chaverrí J; Santamaría A
    Neuroscience; 2005; 135(2):463-74. PubMed ID: 16111817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diminished hippocalcin expression in Huntington's disease brain does not account for increased striatal neuron vulnerability as assessed in primary neurons.
    Rudinskiy N; Kaneko YA; Beesen AA; Gokce O; Régulier E; Déglon N; Luthi-Carter R
    J Neurochem; 2009 Oct; 111(2):460-72. PubMed ID: 19686238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterization.
    Ferrante RJ; Kowall NW; Cipolloni PB; Storey E; Beal MF
    Exp Neurol; 1993 Jan; 119(1):46-71. PubMed ID: 8432351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical models.
    Browne SE
    Ann N Y Acad Sci; 2008 Dec; 1147():358-82. PubMed ID: 19076457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion.
    Margolis RL; O'Hearn E; Rosenblatt A; Willour V; Holmes SE; Franz ML; Callahan C; Hwang HS; Troncoso JC; Ross CA
    Ann Neurol; 2001 Sep; 50(3):373-80. PubMed ID: 11558794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional and cellular gene expression changes in human Huntington's disease brain.
    Hodges A; Strand AD; Aragaki AK; Kuhn A; Sengstag T; Hughes G; Elliston LA; Hartog C; Goldstein DR; Thu D; Hollingsworth ZR; Collin F; Synek B; Holmans PA; Young AB; Wexler NS; Delorenzi M; Kooperberg C; Augood SJ; Faull RL; Olson JM; Jones L; Luthi-Carter R
    Hum Mol Genet; 2006 Mar; 15(6):965-77. PubMed ID: 16467349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal vulnerability in mouse models of Huntington's disease: membrane channel protein changes.
    Ariano MA; Wagle N; Grissell AE
    J Neurosci Res; 2005 Jun; 80(5):634-45. PubMed ID: 15880743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease.
    Emerich DF; Winn SR; Hantraye PM; Peschanski M; Chen EY; Chu Y; McDermott P; Baetge EE; Kordower JH
    Nature; 1997 Mar; 386(6623):395-9. PubMed ID: 9121555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.