These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 810360)

  • 1. Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles.
    Smith AM; Hepp-Reymond MC; Wyss UR
    Exp Brain Res; 1975 Sep; 23(3):315-32. PubMed ID: 810360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activity of supplementary motor area neurons during a maintained precision grip.
    Smith AM
    Brain Res; 1979 Aug; 172(2):315-27. PubMed ID: 111775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the monkey corticomotoneuronal system to the control of force in precision grip.
    Maier MA; Bennett KM; Hepp-Reymond MC; Lemon RN
    J Neurophysiol; 1993 Mar; 69(3):772-85. PubMed ID: 8463818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting properties of monkey somatosensory and motor cortex neurons activated during the control of force in precision grip.
    Wannier TM; Maier MA; Hepp-Reymond MC
    J Neurophysiol; 1991 Mar; 65(3):572-89. PubMed ID: 2051196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential activation of neurons in primate motor cortex during unrestrained forelimb movement.
    Murphy JT; Wong YC; Kwan HC
    J Neurophysiol; 1985 Feb; 53(2):435-45. PubMed ID: 3920359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-related coding of stimulus and response in cat motor cortex.
    Martin JH; Ghez C
    Exp Brain Res; 1985; 57(3):427-42. PubMed ID: 3920069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity in rostral motor cortex in response to predictable force-pulse perturbations in a precision grip task.
    Boudreau MJ; Smith AM
    J Neurophysiol; 2001 Sep; 86(3):1079-85. PubMed ID: 11535658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs.
    Drew T
    J Neurophysiol; 1993 Jul; 70(1):179-99. PubMed ID: 8360715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reexamination of the force relationship of cortical cell discharge patterns with conditioned wrist movements.
    Schmidt EM; Jost RG; Davis KK
    Brain Res; 1975 Jan; 83(2):213-23. PubMed ID: 1109294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum.
    Thach WT
    J Neurophysiol; 1978 May; 41(3):654-76. PubMed ID: 96223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of the precentral cortical command to elbow muscle fatigue.
    Belhaj-Saïf A; Fourment A; Maton B
    Exp Brain Res; 1996 Oct; 111(3):405-16. PubMed ID: 8911934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of isometric force in the "motor" thalamus.
    Anner-Baratti R; Allum JH; Hepp-Reymond MC
    Exp Brain Res; 1986; 63(3):567-80. PubMed ID: 3758268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits.
    Macefield VG; Johansson RS
    Exp Brain Res; 1996 Feb; 108(1):172-84. PubMed ID: 8721165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between activity of motor cortex cells and arm muscles during operantly conditioned response patterns.
    Fetz EE; Finocchio DV
    Exp Brain Res; 1975 Sep; 23(3):217-40. PubMed ID: 810359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles.
    Wetts R; Kalaska JF; Smith AM
    J Neurophysiol; 1985 Aug; 54(2):231-44. PubMed ID: 3928831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting properties of neurons in two parts of the primary motor cortex of the awake rat.
    Donoghue JP
    Brain Res; 1985 Apr; 333(1):173-7. PubMed ID: 3995285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of the ipsilateral movement-related neuron in the motor cortex of the monkey.
    Matsunami K; Hamada I
    Brain Res; 1981 Jan; 204(1):29-42. PubMed ID: 7248755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task.
    Sergio LE; Kalaska JF
    J Neurophysiol; 1998 Sep; 80(3):1577-83. PubMed ID: 9744964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive suppression of intracortical inhibition during graded isometric contraction of a hand muscle is not influenced by hand preference.
    Zoghi M; Nordstrom MA
    Exp Brain Res; 2007 Feb; 177(2):266-74. PubMed ID: 16947062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary motor cortical activity related to the weight and texture of grasped objects in the monkey.
    Picard N; Smith AM
    J Neurophysiol; 1992 Nov; 68(5):1867-81. PubMed ID: 1479450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.