BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8103641)

  • 1. Inhibition of brain calcium channels by plasma proteins from anoxic turtles.
    Bickler PE; Gallego SM
    Am J Physiol; 1993 Aug; 265(2 Pt 2):R277-81. PubMed ID: 8103641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral anoxia tolerance in turtles: regulation of intracellular calcium and pH.
    Bickler PE
    Am J Physiol; 1992 Dec; 263(6 Pt 2):R1298-302. PubMed ID: 1481942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia.
    Bickler PE; Gallego SM; Hansen BM
    J Cereb Blood Flow Metab; 1993 Sep; 13(5):811-9. PubMed ID: 8103057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage.
    Bickler PE; Hansen BM
    Brain Res; 1994 Dec; 665(2):269-76. PubMed ID: 7534604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of NMDA receptor activity in cerebrocortex of turtles (Chrysemys picta) during 6 wk of anoxia.
    Bickler PE
    Am J Physiol; 1998 Jul; 275(1):R86-91. PubMed ID: 9688964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular calcium concentrations during "chemical hypoxia" and excitotoxic neuronal injury.
    Dubinsky JM; Rothman SM
    J Neurosci; 1991 Aug; 11(8):2545-51. PubMed ID: 1678427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of anoxia on excitatory amino acids in brain slices of rats and turtles: in vitro microdialysis.
    Young RS; During MJ; Donnelly DF; Aquila WJ; Perry VL; Haddad GG
    Am J Physiol; 1993 Apr; 264(4 Pt 2):R716-9. PubMed ID: 8097385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.
    Rodgers-Garlick CI; Hogg DW; Buck LT
    Neuroscience; 2013 May; 237():243-54. PubMed ID: 23384611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of sodium channels during anoxia: a putative survival strategy of turtle brain.
    Pérez-Pinzón MA; Rosenthal M; Sick TJ; Lutz PL; Pablo J; Mash D
    Am J Physiol; 1992 Apr; 262(4 Pt 2):R712-5. PubMed ID: 1314518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible decreases in ATP and PCr concentrations in anoxic turtle brain.
    Buck L; Espanol M; Litt L; Bickler P
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Aug; 120(4):633-9. PubMed ID: 9828395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sodium and calcium channel blockade on cytosolic calcium oscillations and phasic contractions of myometrial tissue.
    Phillippe M; Basa A
    J Soc Gynecol Investig; 1997; 4(2):72-7. PubMed ID: 9101464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes).
    Hung KL; Wang CC; Huang CY; Wang SJ
    Eur J Pharmacol; 2009 Jan; 602(2-3):230-7. PubMed ID: 19073169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early anoxia-induced vesicular glutamate release results from mobilization of calcium from intracellular stores.
    Katchman AN; Hershkowitz N
    J Neurophysiol; 1993 Jul; 70(1):1-7. PubMed ID: 8103087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-type calcium channel blockade mechanisms of panaxadiol saponins against anoxic damage of cerebral cortical neurons isolated from rats.
    Kai L; Wang ZF; Xiao JS
    Zhongguo Yao Li Xue Bao; 1998 Sep; 19(5):455-8. PubMed ID: 10375809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertebrate brains at the pilot light.
    Lutz PL; Nilsson GE
    Respir Physiol Neurobiol; 2004 Aug; 141(3):285-96. PubMed ID: 15288600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HTDP-2, a new synthetic compound, inhibits glutamate release through reduction of voltage-dependent Ca²⁺ influx in rat cerebral cortex nerve terminals.
    Lin TY; Lu CW; Huang SK; Chou SS; Kuo YC; Chou SH; Tzeng WF; Leu CY; Huang RF; Liew YF; Wang SJ
    Pharmacology; 2011; 88(1-2):26-32. PubMed ID: 21720189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells.
    Wang J; Weigand L; Lu W; Sylvester JT; Semenza GL; Shimoda LA
    Circ Res; 2006 Jun; 98(12):1528-37. PubMed ID: 16709899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turtles and rats: a biochemical comparison of anoxia-tolerant and anoxia-sensitive brains.
    Suarez RK; Doll CJ; Buie AE; West TG; Funk GD; Hochachka PW
    Am J Physiol; 1989 Nov; 257(5 Pt 2):R1083-8. PubMed ID: 2556054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of extracellular glutamate levels in the long-term anoxic turtle striatum: coordinated activity of glutamate transporters, adenosine, K (ATP) (+) channels and GABA.
    Thompson JW; Prentice HM; Lutz PL
    J Biomed Sci; 2007 Nov; 14(6):809-17. PubMed ID: 17629717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. σ-1 Receptor agonist SKF10047 inhibits glutamate release in rat cerebral cortex nerve endings.
    Lu CW; Lin TY; Wang CC; Wang SJ
    J Pharmacol Exp Ther; 2012 May; 341(2):532-42. PubMed ID: 22357973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.