These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 8104999)
41. Temperature-dependent development of the fungal pathogen Lagenidium giganteum (Oomycetes: Lagenidiales) in larvae of Culex quinquefasciatus (Diptera: Culicidae). Patel KJ; Rueda LM; Axtell RC; Stinner RE J Med Entomol; 1991 Jan; 28(1):95-100. PubMed ID: 2033623 [TBL] [Abstract][Full Text] [Related]
42. Differential Pathogenicity of Metarhizium Blastospores and Conidia Against Larvae of Three Mosquito Species. Alkhaibari AM; Carolino AT; Bull JC; Samuels RI; Butt TM J Med Entomol; 2017 May; 54(3):696-704. PubMed ID: 28399202 [TBL] [Abstract][Full Text] [Related]
43. Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species. Yang YC; Lim MY; Lee HS J Agric Food Chem; 2003 Dec; 51(26):7629-31. PubMed ID: 14664519 [TBL] [Abstract][Full Text] [Related]
44. Laboratory evaluation of Bacillus thuringiensis (Vectobac WDG) against mosquito larvae, Culex pipiens and Culiseta longiareolata. Boudjelida H; Aïssaoui L; Bouaziz A; Smagghe G; Soltani N Commun Agric Appl Biol Sci; 2008; 73(3):603-9. PubMed ID: 19226801 [TBL] [Abstract][Full Text] [Related]
45. [Observation on the development of Coelomomyces indica in Culex tritaeniorhynchus larvae]. Wang Z; Liu S; Lian W; Sun J Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 1995; 13(2):104-6. PubMed ID: 7554155 [TBL] [Abstract][Full Text] [Related]
46. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake. Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826 [TBL] [Abstract][Full Text] [Related]
47. Field evaluation of Lagenidium giganteum (Oömycetes: Lagenidiales) and description of a natural epizoötic involving a new isolate of the fungus. Kerwin JL; Washino RK J Med Entomol; 1988 Nov; 25(6):452-60. PubMed ID: 3204624 [No Abstract] [Full Text] [Related]
48. A predictor variable for efficacy of Lagenidium giganteum produced in solid-state cultivation. May BA; VanderGheynst JS J Ind Microbiol Biotechnol; 2001 Oct; 27(4):203-7. PubMed ID: 11687931 [TBL] [Abstract][Full Text] [Related]
49. In vitro production of zoospores by the mosquito pathogen Lagenidium giganteum (Oomycetes: Lagenidiales) on solid media. Jaronski S; Axtell RC; Fagan SM; Domnas AJ J Invertebr Pathol; 1983 May; 41(3):305-9. PubMed ID: 6863974 [No Abstract] [Full Text] [Related]
50. Comparative larvicidal toxicities of three ecdysone agonists on the mosquitoes Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. Beckage NE; Marion KM; Walton WE; Wirth MC; Tan FF Arch Insect Biochem Physiol; 2004 Nov; 57(3):111-22. PubMed ID: 15484259 [TBL] [Abstract][Full Text] [Related]
51. Phylogenetic and physiological traits of oomycetes originally identified as Vilela R; Humber RA; Taylor JW; Mendoza L Mycologia; 2019; 111(3):408-422. PubMed ID: 30985262 [TBL] [Abstract][Full Text] [Related]
52. [Evaluation of the triflumuron and the mixture of Bacillus thuringiensis plus Bacillus sphaericus for control of the immature stages of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) in catch basins]. Giraldo-Calderón GI; Pérez M; Morales CA; Ocampo CB Biomedica; 2008 Jun; 28(2):224-33. PubMed ID: 18719724 [TBL] [Abstract][Full Text] [Related]
53. Studies on physiology, zoospore morphology and entomopathogenic potential of the aquatic oomycete: Lagenidium giganteum. Sur B; Bihari V; Sharma A; Joshi AK Mycopathologia; 2002; 154(1):51-4. PubMed ID: 12041872 [TBL] [Abstract][Full Text] [Related]
54. Comparative delta-endotoxins of Bacillus thuringiensis against mosquito vectors (Aedes aegypti and Culex pipiens). Lonc E; Kucińska J; Rydzanicz K Acta Microbiol Pol; 2003; 52(3):293-300. PubMed ID: 14743982 [TBL] [Abstract][Full Text] [Related]
55. Insecticide susceptibility status of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti in Panaji, Goa. Thavaselvam D; Kumar A; Sumodan PK Indian J Malariol; 1993 Jun; 30(2):75-9. PubMed ID: 8405597 [TBL] [Abstract][Full Text] [Related]
56. Larvicidal activity of lignans identified in Phryma leptostachya Var. asiatica roots against three mosquito species. Park IK; Shin SC; Kim CS; Lee HJ; Choi WS; Ahn YJ J Agric Food Chem; 2005 Feb; 53(4):969-72. PubMed ID: 15713007 [TBL] [Abstract][Full Text] [Related]
58. [Effects of Lagenidium giganteum on the activities of three enzymes of Culex quinquefasciatus larvae]. Wu JH; Bao HE Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2000; 18(5):308-11. PubMed ID: 12567646 [TBL] [Abstract][Full Text] [Related]
59. Biotic and abiotic factors affecting Leptolegnia chapmanii infection in Aedes aegypti. Pelizza SA; López LC; Becnel JJ; Bisaro V; García JJ J Am Mosq Control Assoc; 2007 Jun; 23(2):177-81. PubMed ID: 17847851 [TBL] [Abstract][Full Text] [Related]
60. [Pathogenicity of Aedes aegypti L. mosquito densonucleosis virus to larvae of other species of blood-sucking mosquitoes]. Lebedinets NN; Zelenko AP Vopr Virusol; 1975; (2):192-6. PubMed ID: 1220247 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]