BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8106450)

  • 1. Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro.
    Amin J; Fernandez M; Ananthan J; Lis JT; Voellmy R
    J Biol Chem; 1994 Feb; 269(7):4804-11. PubMed ID: 8106450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Schistosome extracts with heat shock factor activity revealed by the gel shift assay.
    Levy-Holtzman R; Schechter I
    Parasitology; 1994 Jan; 108 ( Pt 1)():35-42. PubMed ID: 8152853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative and competitive protein interactions at the hsp70 promoter.
    Mason PB; Lis JT
    J Biol Chem; 1997 Dec; 272(52):33227-33. PubMed ID: 9407112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin landscape dictates HSF binding to target DNA elements.
    Guertin MJ; Lis JT
    PLoS Genet; 2010 Sep; 6(9):e1001114. PubMed ID: 20844575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic protein-DNA architecture of a yeast heat shock promoter.
    Giardina C; Lis JT
    Mol Cell Biol; 1995 May; 15(5):2737-44. PubMed ID: 7739554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites.
    Shopland LS; Hirayoshi K; Fernandes M; Lis JT
    Genes Dev; 1995 Nov; 9(22):2756-69. PubMed ID: 7590251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity.
    Kroeger PE; Morimoto RI
    Mol Cell Biol; 1994 Nov; 14(11):7592-603. PubMed ID: 7935474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual regulation of the Drosophila hsp26 promoter in vitro.
    Sandaltzopoulos R; Mitchelmore C; Bonte E; Wall G; Becker PB
    Nucleic Acids Res; 1995 Jul; 23(13):2479-87. PubMed ID: 7630725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor TFIID recognizes DNA sequences downstream of the TATA element in the Hsp70 heat shock gene.
    Emanuel PA; Gilmour DS
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8449-53. PubMed ID: 8378317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high affinity HSF-1 binding site in the 5'-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor.
    Singh IS; He JR; Calderwood S; Hasday JD
    J Biol Chem; 2002 Feb; 277(7):4981-8. PubMed ID: 11734555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids.
    Hosokawa N; Hirayoshi K; Kudo H; Takechi H; Aoike A; Kawai K; Nagata K
    Mol Cell Biol; 1992 Aug; 12(8):3490-8. PubMed ID: 1321338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences.
    Shopland LS; Lis JT
    Chromosoma; 1996 Sep; 105(3):158-71. PubMed ID: 8781184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element.
    Kroeger PE; Sarge KD; Morimoto RI
    Mol Cell Biol; 1993 Jun; 13(6):3370-83. PubMed ID: 8497256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insensitivity of the present hsp26 chromatin structure to a TATA box mutation in Drosophila.
    Lu Q; Wallrath LL; Emanuel PA; Elgin SC; Gilmour DS
    J Biol Chem; 1994 Jun; 269(22):15906-11. PubMed ID: 8195245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of heat shock factor to and transcriptional activation of heat shock genes in Drosophila.
    Fernandes M; Xiao H; Lis JT
    Nucleic Acids Res; 1995 Dec; 23(23):4799-804. PubMed ID: 8532521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit.
    Xiao H; Perisic O; Lis JT
    Cell; 1991 Feb; 64(3):585-93. PubMed ID: 1899357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter.
    Bienz M; Pelham HR
    Cell; 1986 Jun; 45(5):753-60. PubMed ID: 3085957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
    Erkine AM; Magrogan SF; Sekinger EA; Gross DS
    Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural organization and promoter analysis of murine heat shock transcription factor-1 gene.
    Zhang Y; Koushik S; Dai R; Mivechi NF
    J Biol Chem; 1998 Dec; 273(49):32514-21. PubMed ID: 9829985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.