BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8106474)

  • 1. Parallel regulation of fetal gene expression in different photoreceptor cell types.
    van Ginkel PR; Hauswirth WW
    J Biol Chem; 1994 Feb; 269(7):4986-92. PubMed ID: 8106474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rod photoreceptor-specific gene expression in human retinoblastoma cells.
    Di Polo A; Farber DB
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):4016-20. PubMed ID: 7732024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and stability of retinal photoreceptor mRNAs are coordinately regulated during bovine fetal development.
    Timmers AM; Newton BR; Hauswirth WW
    Exp Eye Res; 1993 Mar; 56(3):257-65. PubMed ID: 8386100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal expression of AP-1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina.
    He L; Campbell ML; Srivastava D; Blocker YS; Harris JR; Swaroop A; Fox DA
    Mol Vis; 1998 Dec; 4():32. PubMed ID: 9873070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental patterns of protein expression in photoreceptors implicate distinct environmental versus cell-intrinsic mechanisms.
    Johnson PT; Williams RR; Reese BE
    Vis Neurosci; 2001; 18(1):157-68. PubMed ID: 11347813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubilization of membrane-bound rod phosphodiesterase by the rod phosphodiesterase recombinant delta subunit.
    Florio SK; Prusti RK; Beavo JA
    J Biol Chem; 1996 Sep; 271(39):24036-47. PubMed ID: 8798640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cone-specific cGMP phosphodiesterase alpha' subunit: complete cDNA sequence and gene arrangement.
    Feshchenko EA; Andreeva SG; Suslova VA; Smirnova EV; Zagranichny VE; Lipkin VM
    FEBS Lett; 1996 Feb; 381(1-2):149-52. PubMed ID: 8641425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed expression of the Crx gene and photoreceptor development in the Chx10-deficient retina.
    Rutherford AD; Dhomen N; Smith HK; Sowden JC
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):375-84. PubMed ID: 14744875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-subunit of bovine rod photoreceptor cGMP phosphodiesterase. Comparison with the phosphodiesterase family.
    Lipkin VM; Khramtsov NV; Vasilevskaya IA; Atabekova NV; Muradov KG; Gubanov VV; Li T; Johnston JP; Volpp KJ; Applebury ML
    J Biol Chem; 1990 Aug; 265(22):12955-9. PubMed ID: 2165490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of cone photoreceptor cGMP-phosphodiesterase alpha' subunit in Chinese hamster ovary, 293 human embryonic kidney, and Y79 retinoblastoma cells.
    Piriev NI; Yamashita CK; Shih J; Farber DB
    Mol Vis; 2003 Mar; 9():80-6. PubMed ID: 12655284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and mutagenesis of mouse rod photoreceptor cGMP phosphodiesterase.
    Qin N; Baehr W
    J Biol Chem; 1994 Feb; 269(5):3265-71. PubMed ID: 8106363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 221-bp fragment of the mouse opsin promoter directs expression specifically to the rod photoreceptors of transgenic mice.
    Quiambao AB; Peachey NS; Mangini NJ; Röhlich P; Hollyfield JG; al-Ubaidi MR
    Vis Neurosci; 1997; 14(4):617-25. PubMed ID: 9278991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning of a rhodopsin gene from salamander rods.
    Chen N; Ma JX; Corson DW; Hazard ES; Crouch RK
    Invest Ophthalmol Vis Sci; 1996 Aug; 37(9):1907-13. PubMed ID: 8759361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors.
    Xie HQ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4317-23. PubMed ID: 11095633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographical regulation of cone and rod opsin genes: parallel, position dependent levels of transcription.
    van Ginkel PR; Timmers AM; Szél A; Hauswirth WW
    Brain Res Dev Brain Res; 1995 Oct; 89(1):146-9. PubMed ID: 8575088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a cDNA encoding the alpha' subunit of human cone cGMP-phosphodiesterase.
    Viczian AS; Piriev NI; Farber DB
    Gene; 1995 Dec; 166(2):205-11. PubMed ID: 8543163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted ablation of the Pde6h gene in mice reveals cross-species differences in cone and rod phototransduction protein isoform inventory.
    Brennenstuhl C; Tanimoto N; Burkard M; Wagner R; Bolz S; Trifunovic D; Kabagema-Bilan C; Paquet-Durand F; Beck SC; Huber G; Seeliger MW; Ruth P; Wissinger B; Lukowski R
    J Biol Chem; 2015 Apr; 290(16):10242-55. PubMed ID: 25739440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal coordination of rod and cone photoreceptor differentiation in goldfish retina.
    Stenkamp DL; Barthel LK; Raymond PA
    J Comp Neurol; 1997 Jun; 382(2):272-84. PubMed ID: 9183694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and functional expression of the potassium-dependent sodium-calcium exchanger from human and chicken retinal cone photoreceptors.
    Prinsen CF; Szerencsei RT; Schnetkamp PP
    J Neurosci; 2000 Feb; 20(4):1424-34. PubMed ID: 10662833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.